Benchmarking Adaptive Indexing

Goetz Graefe?, Stratos Idreos!, Harumi Kuno?, and Stefan Manegold®

L CWI Amsterdam 2 Hewlett-Packard Laboratories
The Netherlands Palo Alto, CA
first.last@cwi.nl first.last@hp. com

Abstract. Ideally, realizing the best physical design for the current and
all subsequent workloads would impact neither performance nor storage
usage. In reality, workloads and datasets can change dramatically over
time and index creation impacts the performance of concurrent user and
system activity. We propose a framework that evaluates the key premise
of adaptive indexing — a new indexing paradigm where index creation
and re-organization take place automatically and incrementally, as a
side-effect of query execution. We focus on how the incremental costs
and benefits of dynamic reorganization are distributed across the work-
load’s lifetime. We believe measuring the costs and utility of the stages
of adaptation are relevant metrics for evaluating new query processing
paradigms and comparing them to traditional approaches.

1 Introduction

Consider the task of selecting and constructing indexes for a database that con-
tains hundreds of tables with tens of columns each; a horrendous task if assigned
purely to a DB administrator. Figure 1 illustrates the various methods on how
to reach an appropriate physical design.

(M Escan | | 1 | | | | |

: Ofﬂi'}'le']ﬁd'e'x creation ' H]] [ﬂl H]]IM]M H]] H]] Index creation and index searches
(=== onive ixcex creation NI
= = [ilile [l

Fig. 1. Four approaches to indexing with regard to query processing

The simplest approach (top row) loads data quickly without indexes, and
then does a full table scan for every query. Traditional offline approaches (2nd
row) invest the effort to create certain indexes, and then enjoy fast queries on
those indexed columns. A third approach is based on online tuning and loads data
quickly without indexes. It first observes the workload and then identifies and
constructs the most promising indexes [2, 12, 13]. Unlike all of these methods,
adaptive indexing (bottom row) creates and refines indexes automatically and
incrementally, as a side effect of query execution [6, 7, 9, 10, 11].

2 Graefe, Idreos, Kuno, Manegold

Each approach is ideal for certain scenarios, depending on how much work-
load knowledge and idle time is available to invest in preparations, how much
storage space and maintenance effort we can afford to spend, and, last but not
least, workload composition. For example, if a workload is well-understood and
extremely unlikely to change, then it might be most effective to create indexes
up-front, as shown in Figure 1(2).

However, one can think of other scenarios with sudden, unpredictable, and
radical workload changes. For example, usage of search engines follows current
trends on news and human interest. A sudden event somewhere in the world
is followed by millions of users searching for the same patterns for a limited
amount of time. One cannot anticipate these events before-hand. Any effort to
improve performance should have instant results, yet may be useful only during
this workload peak, burdening the system afterwards unnecessarily with extra
storage and maintenance effort. Adaptive indexing, Figure 1(2), can respond to
workload changes automatically, yet without over-investing in short-lived trends.

Contributions The first two approaches of Figure 1 have been extensively
studied in the past, and recently an initial approach for benchmarking online
selection (the third approach) has been proposed [14]. In this paper, we set forth
a framework for evaluating the new approach of adaptive indexing so that we
can properly and systematically compare adaptive indexing techniques as well
as identify their benefits over past approaches in dynamic scenarios.

Dynamic Workloads Adaptive indexing targets dynamic and unpredictable
scenarios. For example, in a scientific database, researchers perform exploratory
analysis to interpret the data and infer underlying patterns. Workload patterns
continuously evolve with their exploration of the data [15]. With new scientific
data arriving on a daily basis and with changing search patterns, there is little
or no chance to settle for just one workload and create indexes only for that.
By the time we have created indexes for one workload pattern, the focus may
have already changed. In addition, blindly replicating data in such huge data
sets is not appropriate given the already extensive use of storage resources of
the ever-expanding data set.

With Knowledge and Time Traditional approaches for physical design tun-
ing are designed with a drastically different scenario in mind. Perfect up-front
workload knowledge is assumed while workloads are assumed to be stable with
enough idle time to accommodate traditional physical design. More recent ap-
proaches, i.e., soft indexes and online tuning [2, 13], go one step further by
providing a monitoring step that tries to understand the workload while the
system is working and only then create the proper indexes. This deals with situ-
ations where the workload is not known up-front but it also increases the delay
of reaching good performance since queries during the monitoring period are not
supported by indexes. Such approaches only make sense for scenarios where the
time needed to spend in monitoring and the time needed to create the proper
physical design are in proportion to the workload span and query performance
without indexes is acceptable.

Benchmarking Adaptive Indexing 3

Continuous Physical Adaptation Adaptive indexing, a very recent develop-
ment in database architecture technology, addresses the above problems. Instead,
of requiring monitoring and preparation steps in order to select and create useful
indexes, index creation becomes an integral part of query processing via adap-
tive database kernels. The actual query execution operators and algorithms are
responsible for changing the physical design. Essentially, indexes are built selec-
tively, partially and incrementally as a side-effect of query execution. Physical
changes do not happen after a query is processed. Instead, they happen while
processing the query and are part of query execution.

Adaptive indexing can drastically change the way a database system oper-
ates. It also drastically changes the way we should evaluate query processing
performance. Current benchmarks largely consider workload knowledge a given,
while the index creation overhead is not taken into account as part of the pro-
cessing costs. However, an adaptive indexing technique and relevant application
scenarios need to be evaluated in an entirely different setting considering the
complete costs as well as to take into account the various workload phases and
how the system performance evolves. This changes the picture dramatically.

A New Benchmark A recent benchmark proposal formalizes special require-
ments for online index selection [14]. Unlike established traditional benchmarks,
new index structures are intended to be created on-the-fly, so this benchmark
takes into account the cost of index creation.

In this paper, we outline a new benchmark specifically targeted for the eval-
uation of adaptive indexing implementations. As in online tuning, base data is
loaded without incurring any time cost for index maintenance before the first
query arrives. However, unlike the scenario considered by [14], index creation
and maintenance efforts are integrated into query execution actions. Given this
incremental, continuous and selective nature of adaptive indexing we need a very
different evaluation method than does online index selection.

Breaking the Workload Span How good or bad an adaptive indexing tech-
nique is for a particular workload depends on the overhead that incremental
indexing adds to each query and how many queries benefit from the incremental
indexing, versus the degree to which that query benefits from the efforts of prior
queries. Thus, how an adaptive indexing system compares to a system without
index support (in terms of fast loading) or to a system with full index support
(in terms of fast queries) depends on how incremental physical design actions are
performed and scheduled during the workload span. We believe that such new
methods are required to evaluate how well query processing techniques serve
workloads that are increasingly complex, dynamic, and possibly mixed.

Outline The rest of this paper is organized as follows. Section 2 briefly dis-
cusses related work. Then, Section 3 describes the benchmark in detail while
it also provides examples of adaptive indexing behavior and evaluation. Section
4 discusses partial reference implementations of the benchmark, and Section 5
proposes future work. Finally, Section 6 concludes the paper.

4 Graefe, Idreos, Kuno, Manegold

2 Related Work and Background

2.1 Classic and Online Indexing

Typically, indexes have been selected and refined by database administrators,
possibly using physical design tools, in an offline process based on analyzing a
known representative set of the workload [4]. Indexes are then created wholesale.
State of the art research also suggests the usage of alerters [1, 3], i.e., monitoring
tools that alert the DBA on when the system should be re-tuned in order to refine
a currently suboptimal physical design.

More recently online index creation approaches have been introduced [2,
12, 13]. They extend the above model for the cases where the workload is not
known up-front. They add a monitoring step while the actual workload is being
processed and an index is created automatically only once it is believed that
it will pay off. Indexes are again created in one go and completely with the
difference being that they are created in the background while the workload is
actually running.

2.2 Adaptive Indexing

Here, we briefly sketch two adaptive indexing techniques we have recently intro-
duced.

Database Cracking. Database cracking [10] combines some features of both
automatic index selection and partial indexes to implement adaptive indexing.
As shown in Figure 1(4), it reorganizes data within the query operators, integrat-
ing the re-organization effort into query execution. When a column is queried by
a predicate for the first time, a new cracker index is initialized. As the column
is used in the predicates of further queries, the cracker index is refined by range
partitioning until sequentially searching a partition is faster than binary search-
ing in the AVL tree guiding a search to the appropriate partition. The keys in a
cracker index are partitioned into disjoint key ranges, but left unsorted within
each. Each range query analyzes the cracker index, scans key ranges that fall
entirely within the query range, and uses the two end points of the query range
to further partition the appropriate two key ranges.

For example, a read-only query on the range “d — p” would crack the keys
“vjscsgmaqkbue” into three partitions: (1) “cabe”, (2) “j g m k”, and
(3) “y s q w.” If next a new query with range boundaries j and s is processed,
the values in partition (1) could be ignored, but partitions (2) and (3) would be
further cracked into partitions (2a) “”, (2b) “g m k”, (3a)“q s”, and (3b)“y u”.
Subsequent queries continue to partition these key ranges until the structures
have been optimized for the current workload.

Updates and their efficient integration into the data structure are covered
n [11]. Multi-column indexes to support selections and tuple reconstructions
are covered in [9]. Paper [9] also handles storage restrictions via dynamic partial
index materialization.

Benchmarking Adaptive Indexing 5

Adaptive Merging. Inspired by database cracking, adaptive merging [6, 7]
works with block-access devices such as disks, in addition to main memory. The
principal goal for designing adaptive merging is to reduce the number of queries
required to converge to a fully-optimized index, and the principal mechanism is
to employ variable amounts of memory and CPU effort in each query.

While database cracking functions as an incremental quicksort, with each
query resulting in at most two partitioning steps, adaptive merging functions
as an incremental external merge sort. Under adaptive merging, the first query
to use a given column in a predicate produces sorted runs, ideally stored in a
partitioned B-tree [5], and subsequent queries upon that same column perform
merge steps. Each merge step affects key ranges that are relevant to actual
queries, avoiding any effort on all other key ranges. This merge logic executes as
a side effect of query execution.

For example an initial read-only query on the range “d — p” might break the
keys “yjscsgmaqkbue” into equally-sized partitions and then sort them
in memory to produce sorted runs : (1) “cjsy”, (2) “agmq’, (3) “bek u”. If
next a second query with range boundaries j and s is processed, relevant values
would be retrieved (via index lookup) and merged out of the runs and into a

“

“final” partition (fully-optimized for the current workload): (1) “c s y”, (2) “a
g’, (3) “beu”, (final) “j k m q”. Subsequent queries continue to merge results
from the runs until the the “final” partition has been optimized for the current
workload.

Hybrids. Currently, we are actively combining ideas from both database
cracking and adaptive merging with the goal of combining the strengths of these

adaptive indexing techniques so as to better handle dynamic environments.

2.3 Traditional and Online Index Tuning Benchmarks

Traditional benchmarks consider only the query processing costs. More recently,
[14] introduces a new benchmark that captures metrics about online indexing
techniques. The main distinction of [14] is that it includes the index creation
costs as part of processing performance, and is thus suited for evaluating online
techniques that create indexes on-the-fly.

Typically, the cumulative cost is considered, i.e., the total time needed to
run a workload of @ queries. For an online indexing technique though, [14]
includes the cost to run a number of queries without index support as long as
the monitoring and decision phase lasts as well as the costs to create the proper
indexes and subsequently the cost to run the rest of the workload with index
support. The quality of an online technique is based on minimizing this total
time as in the case of a classic indexing technique. In online tuning, however, this
can be broken down into the individual phases that characterize the costs and
benefits of an online technique. For example, one metric is how fast the system
recognizes which indexes to build. The faster this happens, the more queries can
benefit from an improved performance.

To evaluate an adaptive indexing technique properly, we must understand
both the benefits and also the overhead costs of the incremental index improve-

6 Graefe, Idreos, Kuno, Manegold

ments. In adaptive indexing, indexes are built continuously with every query.
Each query runs several operators and each operator performs incremental phys-
ical changes that improve the structure of indexes. Thus, indexes are not built
at once, but rather in numerous steps that are determined by the workload. In
fact, an index may never reach a final, fully refined, state if a less-refined state
can provide sufficiently good performance for the current workload. In this way,
the setting for evaluating adaptive indexing technique is drastically different. We
need to carefully identify and evaluate the multiple different stages that index
creation goes through until it reaches a stable status. During each stage, the
performance characteristics are different. The duration of each of these stages
characterizes the quality of an adaptive indexing technique. In the following
section, we discuss these concepts in detail.

3 Framework for Adaptive Indexing Benchmarks

As the authors of two different approaches to adaptive indexing [6, 7, 9, 10, 11]
and long-time admirers of previous self-tuning approaches [1, 2, 3, 12, 13] we
propose here a framework for benchmarking adaptive indexing systems. One
design goal is that the framework should be able to measure the incremental
costs and benefits of reorganization actions in terms of how these are distributed
along the lifetime of a workload. A second design goal is that this framework
should be generic enough that a variety of utility functions and workloads could
be used. For example, an implementation of this benchmark could be used to
compare two adaptive indexing techniques on the basis of the time needed to
execute the workload just as well as on the basis of the energy used. Finally,
the framework should support the comparison of the effectiveness of an adaptive
indexing technique to any other indexing technique, whether adaptive, online
or traditional. For example, given a utility function and a workload, a database
practitioner should be able to determine how an adaptive indexing technique
compares to a traditional approach in terms of that workload.

We begin by identifying stages that describe how the costs and benefits of
adaptive indexing are distributed along the lifetime of a workload. Distinguishing
between these stages informs comparisons between different adaptive indexing
techniques. Second, we discuss how general design considerations, such as work-
load composition and query selection, can impact adaptive indexing performance
in each of these stages. Finally, we discuss the use of metrics to compare adaptive
indexing performance across the lifetime of a workload.

3.1 Stages of Adaptive Indexing

We define stages of an adaptive indexing life-cycle in terms of the overhead that
incremental indexing adds to each query, versus the degree to which that query
benefits from the efforts of prior queries.

As shown in Figure 2, these two metrics help us to identify four stages of
adaptive indexing over the lifespan of a workload phase. As starting point, we

Benchmarking Adaptive Indexing 7

1st query with no
reorganization overhead

planting pyrsing harvesting
(data structures growing (refinement
initialized) complete)

Fig. 2. Adaptive Indexing Stages

assume that all data has been loaded into the database system, but no index
structures have been created, yet.

Stage 1: Planting This first stage is characterized by the fact that per-query
costs of adaptive indexing exceed those of scan-based query evaluation. The ini-
tial step in adaptive indexing is always the extraction of future index entries from
the original data collection, e.g., a table stored unsorted and in row format. Even
this step can be implemented as side effect of query execution. Subsequently, the
index is refined as a side effect of each query. During the planting stage, the ex-
penses for initializing and refining the index exceed the benefits of exploiting the
still rudimentary index. Consequently, the total per-query costs are larger than
with scan-based query evaluation.

Stage 2: Nursing With more queries being executed, the index becomes more
detailed and complete, yet query execution benefits from the efforts of prior
queries. Hence, the expenses for further refining the index decrease while at
the same time the benefits of using the improving index increase. Consequently,
the per-query costs of adaptive indexing decrease. The point where the per-
query costs of adaptive indexing become lower than those of scan-based query
evaluation marks the beginning of this second stage. During the nursing stage,
the investments of the planting stage start paying-off in terms of per-query costs.
However, the cumulative costs over all queries for adaptive indexing still exceed
those of scan-based query evaluation.

Stage 3: Growing As index refinement proceeds, the cumulative benefits of
the nursing stage eventually outweigh the cumulative investments during the
planting stage. The first query that benefits from the restructuring efforts of
previous queries without having to expend any further effort itself beginning of
the growing stage, i.e., the stage at which the index structure begins to converge
to an optimal state for the current workload phase.

Stage 4: Harvesting Finally, the index structure is fully optimized and query
execution no longer includes side effects. Per-query execution costs reach a min-
imum. We refer to this final stage as harvesting.

8 Graefe, Idreos, Kuno, Manegold

Discussion The above metrics are drastically different than simply measuring
the performance of an a priori fully optimized system or simply considering a
one-time index creation online. In adaptive indexing individual queries perform
small physical design changes and optimal physical design is reached only after
a number of queries have been processed. For adaptive indexing an index is
optimal if it allows the current query to be processed in the same time as a fully
materialized and fully optimized traditional index. This does not mean though
that the adaptive index is completely tuned at this point for the complete data
set. It even does not mean that the adaptive index is completely materialized.

Adaptive indexing stages apply to both new non-clustered (secondary, redun-
dant) indexes, as well as to individual key ranges. Applying adaptive indexing
to clustered (primary) indexes is more akin to table reorganization rather than
index creation. We note that the four stages defined above do not necessarily
occur only once per workload, but rather once per index (possibly partial) that
a workload phase requires.

While originally defined for adaptive indexing, we can also fit traditional a
priori index creation and online index selection/creation into the 4-stages frame-
work. For traditional a priori index creation, the planting stage consists of the
actual index creation, and the remainder of the workload moves directly into the
harvesting stage. For online index creation, the planting stage covers the initial
workload monitoring that leads to the index creation and the index creation
itself. After this, the remainder of the workload phase moves directly into the
harvesting stage.

3.2 Design Considerations

A benchmark should evaluate the design tradeoffs made by the techniques it
evaluates. For example, an online index selection benchmark may test how the
allocation of a space budget, the monitoring time period, and the analysis budget
impact performance of an index selection technique. In the case of adaptive
indexing, because index creation and refinement takes place automatically during
the execution of individual queries, there is no monitoring time period, analysis,
or even index selection needed. Instead, an adaptive indexing benchmark should
test how workload composition and the amount of work performed by query
execution side-effects impact each stage of the adaptive indexing process. For a
given technique and workload, certain stages might become longer or shorter or
even be skipped entirely.

Workload Phases Because adaptive indexing particularly targets shifting
workloads, we model a workload W as a sequence of phases. Each workload
phase P comprises a sequence of queries () and a scheduling discipline .S that
determines how they will be submitted to the database: P = (@, S).

Each phase of a workload potentially calls for new index structures and thus
passes through the planting, nursing, growing, and harvesting stages. When there
is a gradual transition between phases, queries associated with the old phase may
be in growing or harvesting stages while queries associated with the new phase

Benchmarking Adaptive Indexing 9

must begin at the planting stage, although it is possible that the preliminary
stages of the new phase may be skipped or at least facilitated by work done
during a prior phase.

We can model any given indexing mechanism as a transformation function
that transforms Phase P’s original sequence of queries) into a new sequence
of queries Q' at runtime: transform(Q,S) = (Q’,S). Each query ¢ € @ is trans-
formed individually, depending on its place in the workload.

Utility Assume there exists a measure of utility wtility(q) that applies to the
execution of each query and that can also be applied to stages, phases and
workloads. For example, one measure might be the time needed for a workload
phase to complete: utility(P) = 1/time(P). Other simple measures might be the
power used during execution of a query: utility(q) = 1/power(q), or the number
of records touched during query execution: wtility(q) = 1/records_accessed(q).

During the planting stage, each transformed query in ¢’ € Q' has less, or at
best equal, utility than its original counterpart. During the nursing stage, some
transformed queries have increased utility compared to their original counter-
parts. At the growing stage, all transformed queries have increased utility domi-
nate those with decreased utility. Finally, during the harvesting stage, the index
structure is fully optimized from the perspective of that particular workload
phase, and all remaining queries are overhead-free.

Metrics There are a number of ways to assess the utility of an adaptive indexing
mechanism with regard to a given workload. We can assess the overall impact
of an adaptive indexing mechanism by comparing the utility of the original
and transformed workload. We can compare the overall efficiency of adaptive
indexing by comparing the utility of the transformed workload to the utility of
a workload with pre-populated indexes.

In addition, because the premise of adaptive indexing is that a workload can
reap immediate benefits with low initial investments, we should also consider the
cost of the planting and nursing stages, as well as the utility of queries within the
nursing and growing stages. To this end, we can measure the aggregate utility
per query. Finally, we can consider the speed of convergence (how many queries
it takes to reach the harvesting stage).

Experimental Parameters A number of factors impact how the above metrics
are met with regard to a given workload, and that benchmark specifications
should consider. The goal of an adaptive indexing benchmark would be to stress
an adaptive indexing technique regarding its ability to maintain a fluid and quick
transition from one stage to the next. The ideal goal of an adaptive indexing
technique is to quickly move through all stages and reach the harvesting stage.
The even more crucial part is that it quickly enters the nursing and growing
stages so that it can materialize immediate benefits when the workload changes.
Thus, critical parameters to study include:

— Varying the range and distribution of keys used in query predicates. Shifting
the focus into different key ranges forces an adaptive indexing technique to

10 Graefe, Idreos, Kuno, Manegold

exit the harvesting stage and return to previous stages. Once the index is
again optimized enough or completely for the new key ranges, we again enter
the growing and harvesting stage. The smallest the disruption of the stages,
the best the adaptive indexing technique is.

— Varying the density of phases per workload rewards strategies that can adapt
quickly to a new phase. With workload phases changing rapidly there is less
time to spend in adapting so instant reactions and benefits are needed.

— Varying the overlap between workload phases rewards strategies that can
leverage effort done during prior phases.

— Varying the number of columns involved in query predicates as well as the
tables used in the query workload stresses the ability of an adaptive indexing
technique to focus into multiple parts of the data at the same time. It typically
extends the length of the stages as it takes more queries and time to improve
performance on a given data part. It also stresses the ability of the system to
maintain and administer an extended table of contents efficiently.

— Varying the concurrency of queries (the scheduling policy) stresses the ability
of an adaptive indexing technique to properly schedule or serialize multiple
queries. Ideally, the stages should show the same behavior as if the queries
arrive one after the other.

— Varying the percentage of updates in the workload stresses the ability of an
adaptive indexing technique to not disturb the stages flow while new data
are merged and affect the physical actions performed. At worse an update
invalidates all previous actions and leads back to the planting stage. Adap-
tive indexing techniques though should rely on incremental and differential
approaches in order to maintain the stage development.

— Varying the amount of available storage stresses adaptive indexing for its
ability to gain and exploit partial knowledge when storage is not enough to
accommodate all necessary indexes. It should be able to work on partially
materialized indexes and continuously refine them, augment them and reduce
them as the workload shifts. Again a powerful adaptive indexing technique is
characterized for its ability to quickly go past the planing stage and materialize
performance benefits.

4 Partial Reference Implementation

In this section, we illustrate the stages and metrics described in Section 3 using
the results of experiments previously published in [9] and [7].

4.1 General Experimental Setup

The ensuing experiments assume no up-front knowledge and, crucially, no idle
time to invest in any preparation. Data is loaded up-front in a raw format and
queries immediately arrive in a single stream.

Benchmarking Adaptive Indexing 11

The database cracking implementation is built on top of the MonetDB open-
source column-store, which resulted in the design of new operators and opti-
mizer rules in the kernel of MonetDB. Experiments were run using a 2.4 GHz
Intel Core2 Quad CPU equipped with one 32 KB L1 cache per core, two 4 MB
L2 caches, each shared by 2 cores, and 8 GB RAM. The operating system is
Fedora 12. The reported experiments for database cracking measure the elapsed
execution time for each query processed.

The adaptive merging experiments were done using a simulator capable of
configuring experimental parameters such as workspace size, merge fan-in, ini-
tial partition size, etc. The metric used is the number of records touched by
each query (as opposed to the number of comparisons) which is appropriate for
evaluating techniques that target movements in the memory hierarchy.

4.2 Planting, Nursing, and Growing Stages

Our first experiment runs 1000 simple selection queries defined on a 3 attribute
table of 107 tuples with unique integers randomly located in the table columns.
Having a data workload that equally spans across the value domain is again
the hardest scenario for adaptive indexing as it offers no flexibility to focus and
improve certain areas. The queries are of the following form:

select maz(B),maz(C) from R where v; < A<wvsq

The queries are focused on a particular range of data — we choose v; and v,
such that 9/10 queries request a random range from the first half of the attribute
value domain, while only 1/10 queries request a random range from the rest of
the domain. All queries request 20% of the tuples.

Figure 3 is based upon Figure 6 of [9], and compares the performance of
database cracking (blue), full-sort/traditional indexing (magenta), and scan-only
(red) approaches. The utility function is based on elapsed execution time of each
query.

The green annotations mark the planting, nursing, and growing stages of
database cracking. The nursing stage begins when the first time the cost exe-
cuting a database cracking query is less than the cost of executing a scan-only
query. The growing stage begins with the tenth query — the first that does not
incur a cracking action. Note that because the cracking overhead is minimal, in
practice, performance at the growing stage eventually matches the full-sort per-
formance. Actually, even in the nursing stage individual query response times
are significantly improved over the scan approach and only marginally slower
than the presort one.

For the full-sort approach, only the harvesting stage is shown. The presorting
cost (planting stage) for the full-sort approach was 3.5 seconds and is not shown
on the graph. In other words, this approach assumes perfect knowledge and idle
time to prepare. It represents the optimal behavior after paying a hefty cost in
the beginning of the query sequence. Since the planting stage fully refines data
structures, no nursing or growing stages take place.

12 Graefe, Idreos, Kuno, Manegold

1e+06 | -
Nursing stage begins
Planting
Stage MonetDB —
e A IR PP A !
i
8 1etl5 b i
g
0
E DB Cracking —
3
2 fer0d | 1 !
3
¢ Growing stage begins
Presorted MonetDB
Presorting cost = 3.5 secs
1e+03 L L

1 10 100

1000
Query sequence

Fig. 3. Adaptive indexing stages illustrated by database cracking

The scan-only approach builds no auxiliary data structures, and thus does
not participate in any of the adaptive indexing stages at all. It cannot exploit
the fact that the query workload is mainly focused on a small area of the data.

4.3 Shorter Stages

Next we consider the results of an equivalent experiment run using adaptive
merging. Adaptive merging is designed with the property of reaching faster the
harvesting stage in terms of queries needed. It invests a bit more effort than
cracking during the planting stage but less effort than a full sort approach.

This experiment uses a workload of 5,000 queries. Queries are against a ran-
dom permutation of the integers 0 to 9,999,999. Each query requests a random
range of 1 value to 20% of the domain; 10% on average. Initial runs in the par-
titioned B-tree are created with a workspace of 100,000 records, for 51 initial
partitions. The merge fan-in is sufficient to complete all B-tree optimization in
a single merge level.

Figure 4 is based upon Figure 9 of [7], and compares the performance of
adaptive merging (red), full-sort/traditional indexing (purple), and scan-only
(green) approaches. Each data point shows the average of 1% of the workload or
50 queries. Note that in this graph, the utility function is based on the number
of records accessed by each query.

The scan and presort options show the same behavior as in the previous
experiment. Adaptive indexing though shows a different behavior with the stages
being much shorter. The red annotations mark the nursing, and harvesting stages

Benchmarking Adaptive Indexing 13

Planting stage begins

\\ Nursing stage begins Scan

let0n

let0g

Adaptive merging

Crverhead per query [record count]

le02

J / Harvesting stage begins Index search

T
0 20 40 60 30 100

leon

Growing stage begins % of workload

Fig. 4. Adaptive merging query sequence: shorter stages

of adaptive merging. Given the active nature of adaptive merging the harvesting
stage begins very fast leaving a fully optimized B-tree after less than 50 queries.

4.4 Multiple Workload Phases, Including Updates

The experiments described above each address only a single phase. Our next two
experiments illustrates adaptive indexing in the context of a workload with mul-
tiple phases. We first consider a workload consisting of ten phases representing
drifting range queries with a drifting focus, as executed by adaptive merging.
We next consider a workload consisting of update and read-only query phases,
as executed by database cracking.

Drifting Query Focus. One of the design goals of adaptive indexing is to focus
index optimization effort on key ranges that occur in actual queries. If the focus
of query activity changes, additional key ranges are optimized in the index as
appropriate. In this workload, 107 records with unique key values are searched
by 500 queries in five phases that shift focus from the lowest key range in the
index to the highest key range.

Figure 5 is based upon Figure 18 of [8], illustrates the overhead per query
as the workload passes through the phases. As in the previous adaptive merging
experiment, the utility function is based on the number of records accessed by
each query. Because the data accessed by the various phases does not overlap,
each new phase must pass through new nursing, growing, and harvesting stages.

14 Graefe, Idreos, Kuno, Manegold

let04 1et06

let02

Overhead per query [record count]

1et00

1 U | L] ¥

I
0 20 40 60 80 100

% of workload

Fig. 5. Workload with five phases of query focus illustrated by adaptive merging

Mixture of updates and read-only queries. Next we consider a workload
that contains a random mixture of update and query phases. Naturally, updates
require some auxiliary work which pose an overhead that may eventually disturb
the normal flow of adaptive indexing stages.

Two scenarios are considered here, (a) the high frequency low volume scenario
(HFLV); every 10 queries we get 10 random updates and (b) the low frequency
high volume scenario (LFHV); every 10% queries we get 10® random updates.
Random queries are used in the same form as for the first cracking experiment.
Using completely random queries represents the most challenging workload for
an adaptive technique as there is basically no pattern to adapt to. In other
words, using a random workload will result in the longest possible stages in the
adaptation procedure.

Figure 6 is based upon Figure 7 of [9], and shows that cracking maintains
high performance and a self-organizing behavior through the whole sequence of
queries and updates. Peaks and bumps occur frequently disturbing momentarily
the current stage every time.

The power of an adaptive indexing technique is how well it can absorb these
peaks. To achieve this an adaptive indexing needs to rely on adaptive and incre-
mental methods for handling updates. In this case, updates are handled during
query processing as part of the incremental physical design changes, i.e., the
actual query processing operators in the DB kernel are responsible for on-the-fly
merging the necessary updates.

Benchmarking Adaptive Indexing 15

Exp6: (a) LFHV scenario (b) HFLV scenario

1le+06

Non-cracking MonetDB —

Non-cracking MonetDB —

Response time (micro secs)

Cracking —

Cracking —

1 1 1 1 1 1 1 1
10 100 1000 10000 1 10 100 1000 10000
Query sequence Query sequence

1e+05

Fig. 6. Effect of updates

5 Outlook

Adaptive indexing techniques (database cracking, adaptive merging, and hy-
brids) can be combined with automatic index tuning in multiple ways. A tuning
tool might prevent certain indexes (e.g., due to excessive anticipated update
costs) or it might encourage certain indexes (e.g., for immediate creation as side
effect during the first appropriate query execution). Alternatively, the tuning
tool might observe activity and pursue index optimization proactively without
waiting for queries and their side effects. It might perform only some initial
steps of adaptive index creation and optimization (e.g., extraction of future in-
dex entries and run generation, but not merging) or it might finish partially
optimized indexes (e.g., sort small partitions left by database cracking). In ad-
dition, a tuning tool could set resource-usage based policies that limit adaptive
indexing during query execution (e.g., based on memory allocation during run
generation or merging). We intend to explore in our future research some or all
of these combinations of adaptive techniques with traditional index tuning tech-
niques. Benchmarks that measure and compare costs and benefits of such hybrid
techniques will increase our understanding and guide database developers when
choosing techniques to implement and when guiding the application developers.

6 Summary

In this paper, we have laid out the first framework for benchmarking adap-
tive indexing techniques. We have described the problem of adaptive indexing,
discussed characteristics that differentiate adaptive indexing approaches from

16 Graefe, Idreos, Kuno, Manegold

alternatives, and proposed a framework for comparing these characteristics. Un-
like traditional indexing techniques, adaptive indexing distributes the effort of
indexing incrementally across the workload as a side effect of query execution.
Each phase of a workload goes through distinct stages of the adaptive index-
ing life-cycle in terms of the overhead that incremental indexing adds to each
query, versus the degree to which that query benefits from the efforts of prior
queries. An adaptive indexing benchmark for dynamic database scenarios must
take both workload phases and adaptive indexing stages into account, including
stressing the system’s ability to maintain a rapid and fluid transition from one
stage to the other. For the sake of illustration, we described our partial reference
implementation of a benchmark instance using this framework.

Adaptive indexing and the ways to evaluate it represent a completely new
paradigm. We believe the new evaluation methods presented here can also be
exploited by existing offline and online techniques to improve performance in
dynamic scenarios.

References

1. N. Bruno and S. Chaudhuri. To tune or not to tune? a lightweight physical design
alerter. In VLDB. VLDB, 2006.
2. N. Bruno and S. Chaudhuri. An online approach to physical design tuning. In
ICDE, 2007.
3. N. Bruno and S. Chaudhuri. Physical design refinement: the ‘merge-reduce’ ap-
proach. In ACM TODS, 2007.
4. S. Chaudhuri and V. R. Narasayya. Self-tuning database systems: A decade of
progress. In VLDB, 2007.
5. G. Graefe. Sorting and indexing with partitioned b-trees. In CIDR, 2003.
6. G. Graefe and H. Kuno. Adaptive indexing for relational keys. In SMDB, 2010.
7. G. Graefe and H. Kuno. Self-selecting, self-tuning, incrementally optimized in-
dexes. In EDBT, 2010.
8. G. Graefe and H. Kuno. Two adaptive indexing techniques: improvements and
performance evaluation. In HPL Technical Report, 2010.
9. S. Idreos, M. Kersten, and S. Manegold. Self-organizing tuple reconstruction in
column stores. In SIGMOD, 2009.
10. S. Idreos, M. L. Kersten, and S. Manegold. Database cracking. In CIDR, 2007.
11. S. Idreos, M. L. Kersten, and S. Manegold. Updating a cracked database. In
SIGMOD, 2007.
12. M. Liihring, K.-U. Sattler, K. Schmidt, and E. Schallehn. Autonomous manage-
ment of soft indexes. In SMDB, 2007.
13. K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis. COLT: continuous on-line
tuning. In SIGMOD, 2006.
14. K. Schnaitter and N. Polyzotis. A benchmark for online index selection. In ICDE,
2009.
15. J. W. Tukey. Ezxploratory Data Analysis. Addison-Wesley, 1977.

