1,514 research outputs found

    Optically interconnected phased arrays

    Get PDF
    Phased-array antennas are required for many future NASA missions. They will provide agile electronic beam forming for communications and tracking in the range of 1 to 100 GHz. Such phased arrays are expected to use several hundred GaAs monolithic integrated circuits (MMICs) as transmitting and receiving elements. However, the interconnections of these elements by conventional coaxial cables and waveguides add weight, reduce flexibility, and increase electrical interference. Alternative interconnections based on optical fibers, optical processing, and holography are under evaluation as possible solutions. In this paper, the current status of these techniques is described. Since high-frequency optical components such as photodetectors, lasers, and modulators are key elements in these interconnections, their performance and limitations are discussed

    Using a modified Hewlett Packard 8410 network analyzer as an automated farfield antenna range receiver

    Get PDF
    A Hewlett Packard 8410 Network Analyzer was modified to be used as an automated far-field antenna range receiver. By using external mixers, analog to digital signal conversion, and an external computer/controller, the HP8410 is capable of measuring signals as low as -110 dBm. The modified receiver is an integral part of an automated far-field range which features computer controlled test antenna positioning, system measurement parameters, and data acquisition, as well as customized measurement file management. The system described was assembled and made operational, taking advantage of off-the-shelf hardware available at minimal cost

    Optically controlled phased-array antenna technology for space communication systems

    Get PDF
    Using MMICs in phased-array applications above 20 GHz requires complex RF and control signal distribution systems. Conventional waveguide, coaxial cable, and microstrip methods are undesirable due to their high weight, high loss, limited mechanical flexibility and large volume. An attractive alternative to these transmission media, for RF and control signal distribution in MMIC phased-array antennas, is optical fiber. Presented are potential system architectures and their associated characteristics. The status of high frequency opto-electronic components needed to realize the potential system architectures is also discussed. It is concluded that an optical fiber network will reduce weight and complexity, and increase reliability and performance, but may require higher power

    Near-field antenna testing using the Hewlett Packard 8510 automated network analyzer

    Get PDF
    Near-field antenna measurements were made using a Hewlett-Packard 8510 automated network analyzer. This system features measurement sensitivity better than -90 dBm, at measurement speeds of one data point per millisecond in the fast data acquisition mode. The system was configured using external, even harmonic mixers and a fiber optic distributed local oscillator signal. Additionally, the time domain capability of the HP8510, made it possible to generate far-field diagnostic results immediately after data acquisition without the use of an external computer

    Near-field testing of the 30 GHz TRW proof-of-concept multibeam antenna

    Get PDF
    Near-field testing was conducted on the 30 GHz TRW proof-of-concept (POC) Multibeam Antenna (MBA). The TRW POC MBA is a dual offset Cassegrain reflector system using a 2.7 m main reflector. This configuration was selected to assess the ability to create both multiple fixed and scanned spot beams. The POC configuration investigated frequency reuse via spatial separation of beams, polarization selectivity and time division multiple access scanning at 30 GHz. Measurements of directivity, sidelobe level, and pattern were made at NASA Lewis Research Center's Near-Field Antenna Test Facility. Presented in this paper are complete results of these measurements. Included is a detailed discussion of all testing procedures and parameters. Results of additional testing used to evaluate diffraction effects of the subreflector and distortions of the main reflector are also presented

    Ghrelin and cognition

    Get PDF

    Substrate Availability in the Upper Cretaceous Oyster Exogyra Costata

    Get PDF
    The extinct oyster Exogyra (Ostreoida: Gryphaeidae) thrived during the Cretaceous Period. The Genus was especially abundant in the southern parts of the United States, as these areas were once covered under a shallow sea. Left (lower) valves of the species Exogyra costata (Say, 1820), show different variations of the shells including differences in size and scarring of the scar remaining from the point of substrate attachment. The scars are often created by attaching to another organism, leaving an impression of it via a process called bioimmuration. This research analyses specimens from three sites within two different geological formations (Owl Creek Formation, Prairie Bluff Formation). Statistical analysis of attachment frequencies of collected specimens, as well as the analysis of the overall substrate availability reveals certain patterns of attachment, in addition to variations in lithologies of the study areas

    Efficient Analysis in Multimedia Databases

    Get PDF
    The rapid progress of digital technology has led to a situation where computers have become ubiquitous tools. Now we can find them in almost every environment, be it industrial or even private. With ever increasing performance computers assumed more and more vital tasks in engineering, climate and environmental research, medicine and the content industry. Previously, these tasks could only be accomplished by spending enormous amounts of time and money. By using digital sensor devices, like earth observation satellites, genome sequencers or video cameras, the amount and complexity of data with a spatial or temporal relation has gown enormously. This has led to new challenges for the data analysis and requires the use of modern multimedia databases. This thesis aims at developing efficient techniques for the analysis of complex multimedia objects such as CAD data, time series and videos. It is assumed that the data is modeled by commonly used representations. For example CAD data is represented as a set of voxels, audio and video data is represented as multi-represented, multi-dimensional time series. The main part of this thesis focuses on finding efficient methods for collision queries of complex spatial objects. One way to speed up those queries is to employ a cost-based decompositioning, which uses interval groups to approximate a spatial object. For example, this technique can be used for the Digital Mock-Up (DMU) process, which helps engineers to ensure short product cycles. This thesis defines and discusses a new similarity measure for time series called threshold-similarity. Two time series are considered similar if they expose a similar behavior regarding the transgression of a given threshold value. Another part of the thesis is concerned with the efficient calculation of reverse k-nearest neighbor (RkNN) queries in general metric spaces using conservative and progressive approximations. The aim of such RkNN queries is to determine the impact of single objects on the whole database. At the end, the thesis deals with video retrieval and hierarchical genre classification of music using multiple representations. The practical relevance of the discussed genre classification approach is highlighted with a prototype tool that helps the user to organize large music collections. Both the efficiency and the effectiveness of the presented techniques are thoroughly analyzed. The benefits over traditional approaches are shown by evaluating the new methods on real-world test datasets

    Lights, Camera, Animate: The Right of Publicity\u27s Effect on Computer-Animated Celebrities

    Get PDF
    corecore