67 research outputs found

    Community-Level Plant–Soil Feedbacks Explain Landscape Distribution of Native and Non-Native Plants

    Get PDF
    Plant–soil feedbacks (PSFs) have gained attention for their potential role in explaining plant growth and invasion. While promising, most PSF research has measured plant monoculture growth on different soils in short-term, greenhouse experiments. Here, five soil types were conditioned by growing one native species, three non-native species, or a mixed plant community in different plots in a common-garden experiment. After 4 years, plants were removed and one native and one non-native plant community were planted into replicate plots of each soil type. After three additional years, the percentage cover of each of the three target species in each community was measured. These data were used to parameterize a plant community growth model. Model predictions were compared to native and non-native abundance on the landscape. Native community cover was lowest on soil conditioned by the dominant non-native, Centaurea diffusa, and non-native community cover was lowest on soil cultivated by the dominant native, Pseudoroegneria spicata. Consistent with plant growth on the landscape, the plant growth model predicted that the positive PSFs observed in the common-garden experiment would result in two distinct communities on the landscape: a native plant community on native soils and a non-native plant community on non-native soils. In contrast, when PSF effects were removed, the model predicted that non-native plants would dominate all soils, which was not consistent with plant growth on the landscape. Results provide an example where PSF effects were large enough to change the rank-order abundance of native and non-native plant communities and to explain plant distributions on the landscape. The positive PSFs that contributed to this effect reflected the ability of the two dominant plant species to suppress each other’s growth. Results suggest that plant dominance, at least in this system, reflects the ability of a species to suppress the growth of dominant competitors through soil-mediated effects

    Plant-Soil Feedbacks Predict Native but Not Non-Native Plant Community Composition: A 7-Year Common-Garden Experiment

    Get PDF
    Plant-soil feedbacks (PSFs) have gained attention as a potential mechanism of plant growth and coexistence, however, because they are typically measured using plant monocultures in greenhouse conditions, the link between PSFs and plant growth in field communities remains poorly tested. Here, PSFs for six native and four non-native species were measured in a 7-year, common-garden experiment. A plant community growth model was then parameterized either with PSF data (PSF model) or without PSF data (Null model). PSF and Null model predictions were compared to plant ground cover in experimental and natural communities. For eight of 10 species, plant cover at the end of the experiment differed among soils cultivated by different species. For native plants, the Null model incorrectly predicted rank-order abundance for three of four experimental communities and Null model predictions were not correlated with observed plant growth. In contrast, when PSF data were added to the same model, the model correctly predicted rank-order abundance for all four experimental communities and PSF model predictions were well-correlated with plant cover in experimental communities and on the landscape (R2 = 0.62). For non-native species, predictions from both models were correlated with observed species cover (R2 = 0.37 and 0.35, respectively), but there was no difference between PSF and Null model predictions. Previous studies at the study site have shown that PSF maintains alternate-state native and non-native plant communities. Here, it was shown that PSF is also critical for determining species composition within native plant communities, but that other mechanisms appear to be necessary to simulate the rapidly-fluctuating abundances of the short-lived, non-native species in this system. Using a relatively long-term field experiment, this study provided unusually direct evidence for the role of PSF in determining plant abundance in plant communities in field conditions, at least for long-lived native plants

    Root Niche Partitioning among Grasses, Saplings, and Trees Measured Using a Tracer Technique

    Get PDF
    Niche partitioning of resources by plants is believed to be a fundamental aspect of plant coexistence and biogeochemical cycles; however, measurements of the timing and location of resource use are often lacking because of the difficulties of belowground research. To measure niche partitioning of soil water by grasses, planted saplings, and trees in a mesic savanna (Kruger National Park, South Africa), we injected deuterium oxide into 102,000 points in 15, 154-m2 plots randomly assigned to one of five depths (0–120 cm) and one of three time periods during the 2008/2009 growing season. Grasses, saplings and trees all demonstrated an exponential decline in water uptake early in the season when resources were abundant. Later in the season, when resources were scarce, grasses continued to extract the most water from the shallowest soil depths (5 cm), but saplings and trees shifted water uptake to deeper depths (30–60 cm). Saplings, in particular, rapidly established roots to at least 1 m and used these deep roots to a greater extent than grasses or trees. Helping to resolve contradictory observations of the relative importance of deep and shallow roots, our results showed that grasses, saplings and trees all extract the most water from shallow soils when it is available but that woody plants can rapidly shift water uptake to deeper soils when resources are scarce. Results highlight the importance of temporal changes in water uptake and the problems with inferring spatial and temporal partitioning of soil water uptake from root biomass measurements alone

    Modelling water uptake provides a new perspective on grass and tree coexistence

    Get PDF
    Root biomass distributions have long been used to infer patterns of resource uptake. These patterns are used to understand plant growth, plant coexistence and water budgets. Root biomass, however, may be a poor indicator of resource uptake because large roots typically do not absorb water, fine roots do not absorb water from dry soils and roots of different species can be difficult to differentiate. In a sub-tropical savanna, Kruger Park, South Africa, we used a hydrologic tracer experiment to describe the abundance of active grass and tree roots across the soil profile. We then used this tracer data to parameterize a water movement model (Hydrus 1D). The model accounted for water availability and estimated grass and tree water uptake by depth over a growing season. Most root biomass was found in shallow soils (0-20 cm) and tracer data revealed that, within these shallow depths, half of active grass roots were in the top 12 cm while half of active tree roots were in the top 21 cm. However, because shallow soils provided roots with less water than deep soils (20-90 cm), the water movement model indicated that grass and tree water uptake was twice as deep as would be predicted from root biomass or tracer data alone: half of grass and tree water uptake occurred in the top 23 and 43 cm, respectively. Niche partitioning was also greater when estimated from water uptake rather than tracer uptake. Contrary to long-standing assumptions, shallow grass root distributions absorbed 32% less water than slightly deeper tree root distributions when grasses and trees were assumed to have equal water demands. Quantifying water uptake revealed deeper soil water uptake, greater niche partitioning and greater benefits of deep roots than would be estimated from root biomass or tracer uptake data alone. © 2015 Mazzacavallo, Kulmatiski. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Data From: Root Distributions Predict Shrub-Steppe Responses to Precipitation Intensity

    Get PDF
    Precipitation events are becoming more intense around the world, changing the way water moves through soils and plants. Plant rooting strategies that sustain water uptake under these conditions are likely to become more abundant (e.g., shrub encroachment). Yet, it remains difficult to predict species responses to climate change because we typically do not know where active roots are located or how much water they absorb. Here, we applied a water tracer experiment to describe forb, grass, and shrub root distributions. These measurements were made in 8 m by 8 m field shelters with low or high precipitation intensity. We used tracer uptake data in a soil water flow model to estimate how much water respective plant root tissues absorb over time. In low precipitation intensity plots, deep shrub roots were estimated to absorb the most water (93 mm yr-1) and shrubs had the greatest aboveground cover (27%). Grass root distributions were estimated to absorb an intermediate amount of water (80 mm yr-1) and grasses had intermediate aboveground cover (18%). Forb root distributions were estimated to absorb the least water (79 mm yr-1) and had the least aboveground cover (12%). In high precipitation intensity plots, shrub and forb root distributions changed in ways that increased their water uptake relative to grasses, predicting the increased aboveground growth of shrubs and forbs in these plots. In short, water uptake caused by different rooting distributions predicted plant aboveground cover. Our results suggest that detailed descriptions of active plant root distributions can predict plant growth responses to climate change in arid and semi-arid ecosystems

    Chronosequence and Direct Observation Approaches Reveal Complementary Community Dynamics in a Novel Ecosystem

    Get PDF
    Non-native, early-successional plants have been observed to maintain dominance for decades, particularly in semi-arid systems. Here, two approaches were used to detect potentially slow successional patterns in an invaded semi-arid system: chronosequence and direct observation. Plant communities in 25 shrub-steppe sites that represented a 50-year chronosequence of agricultural abandonment were monitored for 13 years. Each site contained a field abandoned from agriculture (ex-arable) and an adjacent never-tilled field. Ex-arable fields were dominated by short-lived, non-native plants. These ‘weedy’ communities had lower species richness, diversity and ground cover, and greater annual and forb cover than communities in never-tilled fields. Never-tilled fields were dominated by long-lived native plants. Across the chronosequence, plant community composition remained unchanged in both ex-arable and never-tilled fields. In contrast, 13 years of direct observation detected directional changes in plant community composition within each field type. Despite within-community changes in both field types during direct observation, there was little evidence that native plants were invading ex-arable fields or that non-native plants were invading never-tilled fields. The more-controlled, direct observation approach was more sensitive to changes in community composition, but the chronosequence approach suggested that these changes are unlikely to manifest over longer time periods, at least in part because of disturbances in the system. Results highlight the long-term consequences of soil disturbance and the difficulty of restoring native perennials in disturbed semi-arid systems

    Plant–Soil Feedback Effects Altered by Aboveground Herbivory Explain Plant Species Abundance in the Landscape

    Get PDF
    Relatively little is known about how plant–soil feedbacks (PSFs) may affect plant growth in field conditions where factors such as herbivory may be important. Using a potted experiment in a grassland, we measured PSFs with and without aboveground insect herbivory for 20 plant species. We then compared PSF values to plant landscape abundance. Aboveground herbivory had a large negative effect on PSF values. For 15 of 20 species, PSFs were more negative with herbivory than without. This occurred because plant biomass on “home” soils was smaller with herbivory than without. PSF values with herbivory were correlated with plant landscape abundance, whereas PSF values without herbivory were not. Shoot nitrogen concentrations suggested that plants create soils that increase nitrogen uptake, but that greater shoot nitrogen values increase herbivory and that the net effect of positive PSF and greater aboveground herbivory is less aboveground biomass. Results provided clear evidence that PSFs alone have limited power in explaining species abundances and that herbivory has stronger effects on plant biomass and growth on the landscape. Our results provide a potential explanation for observed differences between greenhouse and field PSF experiments and suggest that PSF experiments need to consider important biotic interactions, like aboveground herbivory, particularly when the goal of PSF research is to understand plant growth in field conditions

    Soil water retention curves for the major soil types of the Kruger National Park

    Get PDF
    Soil water potential is crucial to plant transpiration and thus to carbon cycling and biosphere–atmosphere interactions, yet it is difficult to measure in the field. Volumetric and gravimetric water contents are easy and cheap to measure in the field, but can be a poor proxy of plant-available water. Soil water content can be transformed to water potential using soil moisture retention curves. We provide empirically derived soil moisture retention curves for seven soil types in the Kruger National Park, South Africa. Site-specific curves produced excellent estimates of soil water potential from soil water content values. Curves from soils derived from the same geological substrate were similar, potentially allowing for the use of one curve for basalt soils and another for granite soils. It is anticipated that this dataset will help hydrologists and ecophysiologists understand water dynamics, carbon cycling and biosphere–atmosphere interactions under current and changing climatic conditions in the region

    Winter Wheat Resistant to Increases in Rain and Snow Intensity in a Semi-Arid System

    Get PDF
    As the atmosphere warms, precipitation events have been predicted and observed to become fewer and larger. Changes in precipitation patterns can have large effects on dryland agricultural production, but experimental tests on the effects of changing precipitation intensity are limited. Over 3 years, we tested the effects of increased precipitation intensity on winter wheat (Triticum aestivum L.; Promontory variety) in a temperate dryland agricultural system that was on a rotation of crop and fallow years. We used 11 (2.1 × 2.5 m) shelters to collect and redeposit rain and snow as larger, more intense events. Total precipitation was the same in all plots, but event sizes in each plot varied from 1 to 18 mm. Treatments increased soil water availability, but winter wheat biomass and grain yield did not differ among treatments. Similarly, other measured plant growth responses, including vegetation greenness, leaf area index, canopy temperature, photochemical efficiency, root area, and new root growth, did not differ among treatments. Results indicate that at least in the semiarid climate and silt loam soils studied here, anticipated increases in precipitation intensity are unlikely to affect winter wheat production negatively. Further, increased precipitation intensity may mitigate water stress caused by increasing temperatures and encourage the use of wheat varieties that utilize deeper, later season soil water

    Soil type more than precipitation determines fine-root abundance in savannas of Kruger National Park, South Africa

    Get PDF
    Aims Our aim was to examine how soil type and precipitation affect fine-root abundance in savanna ecosystems across Kruger National Park (KNP), South Africa. Methods Fine-root distributions were measured in four sites that represent the natural factorial combination of soil types (basalt-derived clay or granite-derived sand) and precipitation regimes [wet (~750 mm mean annual precipitation) or dry (~500 mm mean annual precipitation)] that occur in KNP. Root area and biomass (at soil depths of 0–75 cm) were estimated from measurements of root number, length and width in images from minirhizotron tubes at each site. Measurements were made during one mid-season sampling during three subsequent years. Results Fine-root area was more than twice as large in clay (2.3 ± 0.0 mm2 cm−2) than sand (0.8 ± 0.3 mm2 cm−2) sites but did not differ between wet and dry sites. Root number, length and width, used to derive area, showed similar patterns to fine-root area. Fine-root biomass estimated from these values was 5.5 ± 0.6 Mg ha−1 in clay sites and 2.2 ± 0.9 Mg ha−1 in sand sites. Conclusions Across the four sites, a change from sand to clay soils had a greater effect on fine-root abundance and distributions than a 50% increase in precipitation from dry to wet sites. Results highlight the importance of soil properties on root dynamics and carbon pools in the region
    corecore