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Abstract. Relatively little is known about how plant–soil feedbacks (PSFs) may affect plant
growth in field conditions where factors such as herbivory may be important. Using a potted
experiment in a grassland, we measured PSFs with and without aboveground insect herbivory
for 20 plant species. We then compared PSF values to plant landscape abundance. Aboveground
herbivory had a large negative effect on PSF values. For 15 of 20 species, PSFs were more nega-
tive with herbivory than without. This occurred because plant biomass on “home” soils was
smaller with herbivory than without. PSF values with herbivory were correlated with plant land-
scape abundance, whereas PSF values without herbivory were not. Shoot nitrogen concentra-
tions suggested that plants create soils that increase nitrogen uptake, but that greater shoot
nitrogen values increase herbivory and that the net effect of positive PSF and greater above-
ground herbivory is less aboveground biomass. Results provided clear evidence that PSFs alone
have limited power in explaining species abundances and that herbivory has stronger effects on
plant biomass and growth on the landscape. Our results provide a potential explanation for
observed differences between greenhouse and field PSF experiments and suggest that PSF exper-
iments need to consider important biotic interactions, like aboveground herbivory, particularly
when the goal of PSF research is to understand plant growth in field conditions.

Key words: aboveground herbivory; biotic interactions; field experiment; grassland; landscape abun-
dance; plant–soil feedback; shoot nitrogen content; soil legacy effects.

INTRODUCTION

Plant–soil feedbacks (PSFs) have become an impor-
tant concept in explaining plant growth and coexistence
(van der Putten et al. 2013, Smith-Ramesh and Reynolds
2017). The concept of PSFs is based on the idea that
plants, via litter production, exudation, and uptake pro-
cesses, induce changes in abiotic and biotic soil proper-
ties that, in turn, influence subsequent plant growth
(Bever et al. 1997, Ehrenfeld et al. 2005). To measure
PSF effects, experiments typically compare measure-
ments of plant growth on “home” soils (i.e., self-culti-
vated or conspecific soils) to plant growth on “away”
soils (i.e., non-self-cultivated or heterospecific soils;
Bever et al. 1997, Brinkman et al. 2010, van der Putten
et al. 2013). PSFs are positive when plant growth is
greater on home than away soils and negative when
plant growth is greater on away than home soils (Bever
1994). Because PSFs impact a plant’s biomass produc-
tion, they are expected to alter plant species’ abundances

in communities and the landscape (e.g., Klironomos
2002, Mangan et al. 2010, Bennett et al. 2017). Mathe-
matical models of PSFs suggest that, as a form of nega-
tive frequency dependence, negative PSFs encourage
species coexistence through species replacements over
time (Bever et al. 1997). In contrast, these models predict
that positive PSFs encourage the development of plant
dominance (see e.g., Bever 2003, Bonanomi et al. 2005,
Revilla et al. 2013). However, because PSFs are one of
many factors that may affect plant growth, there are
likely to be many situations where PSFs do not deter-
mine plant coexistence and abundance (Reinhart 2012,
Bauer et al. 2015, Heinze et al. 2015a; Kulmatiski 2016).
For instance, there are many abiotic (e.g., temperature,
light, moisture, nutrients) and biotic (e.g., above- and
belowground herbivores) environmental drivers that
directly and indirectly influence PSFs (Smith-Ramesh
and Reynolds 2017, Bennett and Klironomos 2019,
DeLong et al. 2019). Hence, as PSFs are one of many
factors that may affect plant growth on the landscape
studies are needed that can link observed PSF effects to
plant abundance on the landscape.
PSFs not only impact plant biomass production but

also influence the nutritional quality of plants (Kos et al.
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2015, White et al. 2015) as well as the composition of sec-
ondary metabolites involved in herbivory defense (Beze-
mer et al. 2005, Kostenko et al. 2012, Zhu et al. 2018).
These chemical plant traits (i.e., nutritional quality and
palatability) have been found to influence the amount of
biomass reduction by insect herbivores (e.g., Mattson
1980, Massey et al. 2007). Hence, the outcome of PSFs
can be influenced by herbivory (Heinze and Joshi 2018,
Heinze et al. 2019). These recent findings are, however,
based on studies with a small set of plant species; therefore
tests on a broader species set are needed.
Most PSF experiments have been performed in green-

house conditions that fail to place PSFs in the context of
environmental conditions that are likely to affect the role
of plant growth in communities (Heinze et al. 2016). Rel-
ative to PSFs measured in field conditions, greenhouse-
based PSF experiments have been found to produce dif-
ferent PSFs, mainly because of the diverse abiotic and
biotic interactions that plants and soils receive under
natural field conditions (Casper et al. 2008, Heinze et al.
2016). Under field conditions, PSFs are, however, only
one of many environmental factors that influence plant
biomass production and thus local abundance (Wardle
et al. 2004).
Among these abiotic and biotic environmental factors,

herbivory by aboveground insects is viewed as a promi-
nent factor affecting plant biomass production and thus
local abundance (Crawley 1989, Branson and Sword
2009). By selectively damaging particular plant species,
insect herbivores alter competitive relationships and thus
codetermine species local abundances (Borgstr€om et al.
2016, Engelkes et al. 2016). Though it has rarely been
examined (Smith-Ramesh and Reynolds 2017), herbi-
vores can also differently influence individuals within a
single species (Bezemer et al. 2005, Heinze and Joshi
2018, Heinze et al. 2019, Kirchhoff et al. 2019). These
studies suggest a potentially strong interaction between
PSF and aboveground herbivory, though they have gen-
erally been performed in greenhouse and not in field
conditions (e.g., Bezemer et al. 2005, Engelkes et al.
2008, Kos et al. 2015; but see, e.g., Heinze and Joshi
2018, Hannula et al. 2019). Therefore, several publica-
tions have highlighted the need for field-based PSF
experiments (Kulmatiski and Kardol 2008, van der Put-
ten et al. 2013, Heinze et al. 2016).
The overarching goal of this research was to test the

effect of aboveground herbivory on the ability of PSF
data to explain plant abundance on the landscape. To
accomplish this goal, we used a potted field experiment
to measure PSFs with and without herbivory for 20 co-
occurring plant species. PSF values with and without
herbivory were correlated with plant abundance on the
landscape. We expected that PSFs measured with above-
ground herbivory would explain more of the observed
species abundance, compared to PSFs without her-
bivory, because under natural conditions both factors
influence landscape abundance of plant species. To iden-
tify a potential mechanism through which PSF may

affect herbivory, we additionally measured nitrogen (N)
content in plant shoots on home and away soils.

MATERIAL AND METHODS

Study site and species

The experiment was conducted in a meadow at a field
site of the University of Potsdam (52°24029.76″ N,
13°1013.74″ E, Brandenburg, Germany) that has been
described elsewhere (Heinze et al. 2016, Heinze and
Joshi 2018). Briefly, over the last 10 yr, average annual
precipitation (550 mm) and temperature (11.5°C) at this
site varied from highest mean values in July (79 mm;
18.4°C) to lowest mean values in January/February
(35 mm; �1.2°C). The meadow is located on nutrient-
poor slightly sandy loam, was less intensively managed
for the last 20 yr with no fertilization, and comprises a
high plant species diversity.
To test the PSF vs. abundance relationship, we

selected 20 plant species according to their abundance
determined in previous vegetation surveys (Table 1;
Heinze et al. 2016, Heinze and Joshi 2018). Seeds for
each species were collected by hand on site. Species
abundance in the season of experiment was assessed in
30 (2 9 2 m) plots using visual estimation in July 2017
(Table 1). Plots were subdivided into 100 (20 9 20 cm)
cells and percent cover by species was determined to 1%.

Plant–soil feedback experiment

A natural-experiment approach was used to measure
PSFs (Kulmatiski and Kardol, 2008). In the meadow of
the field site of the University of Potsdam following
Brandt et al. (2014), 2 L of species-specific rhizosphere
soil was collected from up to 60 individuals per species
and composited into one bulk sample. One half of the
composited sample was used as home soil (i.e., conspeci-
fic soil), and the remaining half was used to create away
soils (i.e., soils of the remaining heterospecific species).
In total there were 40 soils: For each of the 20 species,
there was one home soil and one away soil that was cre-
ated by mixing equal portions of each of the other 19
species studied. This mixing procedure is suggested to
decrease variance in plant responses among individual
soil samples and therefore to increase the likelihood of
falsely detecting PSFs (Reinhart and Rinella 2016).
However, because soil handling methods depend on
specific research questions and feasibility (Cahill et al.
2017, Gundale et al. 2019) and our research goal was to
test the effect of herbivory at the research site and not to
provide inference to all sites with these species, this
approach was appropriate (see also, e.g., Kulmatiski
2016, Teste et al. 2019). To avoid potential differences in
soil nutrient availability among the 40 soils, the soils
were inoculated (10%) into an autoclaved soil:sand mix-
ture (five times within 24 h; 20 min, 121°C; see also
Brinkman et al. 2010). The soil:sand mixture consisted
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of a 50:50 mixture of sieved (mesh size: 5 mm) field soil
collected from the same meadow at the field site of the
University of Potsdam and purchased sand (grain size:
2 mm; Brun & B€ohm, Potsdam, Germany).
Pots (Deepots D25L: volume 0.41 L; height 25 cm;

diameter 5 cm; Stuewe & Sons, Tangent, Oregon, USA)
were filled with the inoculated soils. To prevent cross-con-
tamination, each pot was placed in an individual sterile
plastic saucer and received an additional layer (1 cm) of
sterilized sand on top. In June 2017, seeds were surface
sterilized (3 min in 7% sodium hypochlorite solution) to
prevent microbial contamination. Afterwards, seedlings
were germinated on autoclaved sand in sterile plastic
chambers (32 9 50 9 14 cm; Meyer, Rellingen, Ger-
many) in a greenhouse (min/max: temperature 15°C/25°C;
relative humidity 33%/90%; additional light:
140 µmol�s�1�m�2; 12/12 h light/dark) at the University
of Potsdam. In early July 2017, 2-week-old, similar-sized
seedlings were planted in the prepared pots, one individual
seedling per pot. Immediately after planting, pots were
moved from the greenhouse to the meadow at the field
site. There, to ensure the survival of the young seedlings
under field conditions, seedlings were shaded for 1 week.
Seedlings that died during this week were replaced.

Herbivory treatment

All pots were buried (25-cm depth) to match the soil
surface. Pots were located in 10 replicate blocks that
paired herbivory treatments. Paired plots were equipped
with cages (length 80 cm 9 width: 80 cm 9 height
90 cm) that were either completely covered with fly mesh
(mesh size: 1.3 mm; Meyer) or only shaded with the fly

mesh at the upper 50 cm; this allows access for herbi-
vores but ensures the same light conditions in both treat-
ments (see Appendix S1: Fig. S1). The fully covered
plots are referred to as “�herbivory”, whereas the par-
tially covered plots are referred to as “+herbivory” treat-
ment throughout the manuscript. To reduce potential
differences in microclimate, pots were shifted among
blocks weekly. To prevent direct competition, plants
adjacent to the experiment were mowed monthly (see
Appendix S1: Fig. S1).
Each species 9 soil combination was replicated 10

times within each herbivory treatment (i.e., + or �her-
bivory), resulting in 800 pots (20 species 9 2 soils 9 2
herbivory treatments 9 10 replicates). Pots were
arranged in a randomized block design. All plants were
watered with tap water once a week.

Measurements

After 12 weeks, herbivory effects were assessed by
visual assessment. Damage by chewing herbivores was
assessed without any further discrimination of feeding
guilds. In accordance with Heinze et al. (2019), we visu-
ally estimated biomass removal (in percent; severity) at
10 randomly chosen leaves per individual plant (see also,
e.g., Johnson et al. 2016). We furthermore determined
the proportion of damaged leaves by counting the num-
ber of damaged as well as total leaves (incidence) for
each single experimental plant (see Russell et al. 2010).
Severity and incidence were used to assess the shoot bio-
mass removal by aboveground insect herbivores for
whole experimental plants according to Smith et al.
(2005). After visual assessments of herbivory, shoots of

TABLE 1. Information on plant species used in the plant–soil feedback experiment.

Family Art Code Abundance (%) Frequency

Cyperaceae Luzula campestris Lc 1.63 � 1.17 13
Poaceae Anthoxanthum odoratum Ao 2.47 � 2.45 22
Poaceae Arrhenatherum elatius Ae 52.17 � 11.27 30
Poaceae Bromus hordeaceus Bh 0.3 � 0.48 11
Poaceae Bromus sterilis Bs 1.08 � 1.88 10
Poaceae Dactylis glomerata Dg 1.03 � 1.43 21
Poaceae Festuca brevipila Fb 2.18 � 4.48 8
Poaceae Helictotrichon pubescens Hp 12.17 � 8.17 25
Poaceae Holcus lanatus Hl 2.83 � 4.38 15
Poaceae Poa pratensis Pp 10.77 � 8.57 22
Ranunculaceae Ranunculus acris Ra 0.53 � 1.26 10
Polygonaceae Rumex acetosella Rac 3.18 � 3.56 22
Polygonaceae Rumex thyrsiflorus Rt 4.3 � 3.9 22
Plantaginaceae Plantago lanceolata Pl 4.13 � 3.08 26
Fabaceae Lotus corniculatus Lco 0.22 � 0.55 5
Fabaceae Trifolium dubium Td 0.13 � 0.43 3
Fabaceae Trifolium pratense Tp 1.7 � 2.31 20
Asteraceae Achillea millefolium Am 8.33 � 11.05 19
Asteraceae Hypochaeris radicata Hr 1.25 � 1.72 15
Asteraceae Taraxacum officinale To 1.18 � 1.63 19

Note: Abundance represents the mean (�SD) percent cover of each species in 30 plots in July 2017.
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the experimental plants were harvested and the roots
were washed. Shoot and root biomass was dried (shoot
48 h, 80°C; root 72 h, 70°C) and weighed. To place her-
bivory observed in the experiment in context, herbivory
was also assessed using the same visual estimates of her-
bivory for 10 randomly selected individuals of each spe-
cies in the meadow.
Nutrient differences among soil types were tested using

chemical digestion and photometric methods as in Heinze
et al. (2017). To test whether the different home and away
soils affected the nutritional quality in plant shoots, we
analyzed N concentrations according to Cornelissen et al.
(2003) for a subsample of plants. Complete shoots of three
replicates per species, soil, and herbivory treatment
(n = 240) were dried at 80°C (48 h), ground (Retsch
MM200; Germany), and subsequently analyzed for N
concentrations using an elemental analyzer (HEKAtech
GmbH, Wegberg, Germany; Euro EA 3000).
To test for potential differences in abiotic and biotic

conditions between the +herbivory and �herbivory plots
as well as at control plots that were located adjacent to
the herbivory plots (see Appendix S1: Fig. S1) we per-
formed several measurements as previously described in
Heinze and Joshi (2018). Briefly, HOBO Pro v2 data log-
gers (Onset Computer, Bourne, Massachusetts, USA)
were used to measure air temperature and relative air
humidity continuously at 20-cm height, and a rod ther-
mometer (Roth, Germany) was used to determine soil
temperature (15-cm depth) biweekly in randomly chosen
pots in each treatment plot per site and in the soil of the
respective control plots. Light conditions (light intensity;
klx; Testo 545 Luxmeter, Testo SE & Co., Lenzkirch,
Germany and photosynthetically active radiation;
µmol�s�1�m�2 PhAR; Quantum sensor, Li-1400; Li-Cor,
Lincoln, Nebraska, USA) were measured (30 cm height)
on two cloudless days in the treatment and control plots.
Precipitation was measured by placing plastic cups (di-
ameter: 7 cm, height: 10 cm, volume: 200 mL) for 14 d
at the treatment and control plots.
Pitfall (plastic cups filled with 100 mL water-based

solution containing detergent and covered with plastic
roof at 10 cm height) and sticky traps (8 9 12 cm; Nex-
aLotte, Mainz, Germany; at 15 cm height) were installed
in all treatment and control plots, to check whether and
which herbivorous insects were excluded by our �her-
bivory treatment and to compare natural conditions in
the meadow with experimental conditions. We recorded
the number of insects per trap after 14 d.
Overall, abiotic conditions did not differ between the

herbivory and control plots (Appendix S1: Table S1). The
number of insects was similar in the +herbivory plots and
controls, whereas the �herbivory treatment excluded most
insects (see Appendix S1: Tables S1 and S2).

Statistical analyses

All analyses were performed in R version 3.1.2 (R
Development Core Team 2014). Prior to analyses

residuals were checked for homogeneity of variance and
tested for normality.
We used one-way analyses of variance (ANOVA) with

subsequent Tukey’s honestly significant difference
(HSD) post hoc tests to test for differences in abiotic
and biotic environmental conditions between the three
plots (+herbivory, �herbivory, and control) and to deter-
mine differences in damage caused by aboveground
insect herbivores between the 20 species.
PSFs were calculated as log(homeA/awayA); where

homeA is the biomass of species Awith its own soil biota
and awayA is the biomass of species A with soil biota of
the 19 remaining heterospecific species (see Brinkman
et al. 2010). PSFs were calculated pairwise per block
(i.e., replicate) for total biomass separately for the + and
�herbivory plots.
Therewith we compared plant growth on home and

away soils with herbivory vs. plant growth on home and
away soils without herbivory. Because we were interested
in understanding the role of PSF and herbivory in natu-
ral plant communities, we have not compensated PSF
values for biomass lost to herbivory, as this would have
changed the result of PSFs and would not have reflected
natural conditions. To test whether PSFs of the 20 plant
species differed between the + and �herbivory plots we
performed ANOVA with linear mixed effects models
using the “nlme” package (Pinheiro et al. 2017). The
model included the predictors “species” and “herbivory
treatment” as fixed factors, as well as their interactions,
and tested their effects on PSFs. We used “blocks” (10)
as a random factor. To test differences in PSFs between
the + and �herbivory plots for each species we per-
formed two-sample t tests. Within + and �herbivory
plots, we used one-sample t tests to assess the effect of
home soils on plant biomass in comparison with away
soils for each species. Furthermore, we used ANOVA
and two-sample t tests to test whether total biomass dif-
fered between soils in the herbivory plots and whether
damages by herbivores (i.e., shoot biomass removal) dif-
fered between home and away soils for plants in the
+herbivory plots (plants in the �herbivory plots showed
no noteworthy damages by herbivores; see Appendix S1:
Table S3). Similar to the model for PSFs, this ANOVA
tested effects and interactions between the predictor
variables “species” and “soil treatment” as fixed factors
on herbivory, as response variables, whereas “replicates”
were used as random factors.
To test the relative importance of soil vs. species

effects we calculated average differences in final biomass
between home vs. away soils and between all species-pair
combinations on home soils in the �herbivory plots,
where final biomass was not affected by herbivory.
In addition, to test whether home and away soils differ-

entially affect plant nutritional quality, we performed
ANOVA for N concentrations in shoots. The ANOVA
included species, soil treatment (home and away), and her-
bivory-exclusion treatment (+herbivory and �herbivory),
as well as their interactions as predictor variables. We used
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replicate as random factor. Afterwards, differences in N
concentrations between home and away soils were tested
with two-sample t-tests for every species.
To determine whether or not PSF with or without her-

bivory can predict plant abundance on the landscape,
the relationship between landscape abundance and PSFs
of the 20 species in the two herbivore-exclusion levels
were analyzed using linear regressions. As Arrhen-
atherum elatius is an outlier in regard to abundance com-
pared to the other species (see Table 1) and as this
species showed almost no damages by aboveground her-
bivores (see Appendix S1: Table S3), we performed
regressions with and without this species.

RESULTS

Soil effects on plant nutritional quality and herbivory

The soils used in this experiment did not differ in plant-
available nutrients among species or between home and
away soil within species (Appendix S1: Table S4).

However, plant shoot N concentration for the 20 species
was differently affected by the different home and away
soils (species 9 soil interaction: F19, 158 = 4.74;
P < 0.001; Fig. 1a), but not by herbivory (soil 9 her-
bivory interaction: F19, 158 = 1.23; P = 0.24). Shoot N
concentration was highest on home soils for 15 species, on
away soil for one species (Anthoxanthum odoratum), and
similar on both soils for four species (Fig. 1a). Similarly,
shoot biomass removal by aboveground insects differed
on home vs. away soils (F19, 338 = 2.84, P < 0.001; Fig. 1).
For 12 species shoot biomass removal was greater when
grown on home soils; for A. odoratum it was greater on
away soil and remaining species demonstrated no differ-
ences in damages between home and away soils (Fig. 1b).
Across species herbivory decreased total plant biomass
36% on home soils (F1, 386 = 38.02; P < 0.001; R2 = 0.10)
but had no effect on away soils (F1, 390 = 0.74; P > 0.1;
R2 = 0.01; Appendix S1: Fig. S2). Overall, levels of her-
bivory in the +herbivory experimental plots were similar
to levels of herbivory on the landscape (see Appendix S1:
Table S3).

FIG. 1. Shoot nitrogen (N) concentration (a) and shoot biomass removal by aboveground insect herbivores (b) for 20 plant species
grown on their home (blank) and away (gray) soils. See Table 1 for species codes. Data represent mean � SE; with n = 6 for a and
n = 10 for b. Asterisks above bars represent significance after t-test analysis: *P < 0.05; (*) P < 0.1. Ae, Arrhenatherum elatius; Am,
Achillea millefolium; Ao, Anthoxanthum odoratum; Bh, Bromus hordeaceus; Bs, Bromus sterilis; Dg, Dactylis glomerata; Fb, Festuca
brevipila; Hl,Holcus lanatus; Hp,Helictotrichon pubescens; Hr,Hypochaeris radicata; Lc, Luzula campestris; Lco, Lotus corniculatus;
Pl, Plantago lanceolata; Pp, Poa pratensis; Ra,Ranunculus acris; Rac,Rumex acetosella; Rt,Rumex thyrsiflorus; Td,Trifolium dubium;
To,Taraxacum officinale; Tp,Trifolium pratense.
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PSF and herbivory experiment

The presence of aboveground insect herbivores influ-
enced the outcome of PSFs for total plants (shoots and
roots), but these effects differed among the 20 species
(F19, 333 = 2.39; P = 0.001; Fig. 2). Without herbivores
11 species (Bromus sterilis, Dactylis glomerata, Fes-
tuca brevipila, Holcus lanatus, Helictotrichon pubescens,
Lotus corniculatus, Plantago lanceolata, Poa pratensis,
Rumex thyrsiflorus, Trifolium dubium, and Tri-
folium pratense) showed positive PSFs, 8 species (Arrhen-
atherum elatius, Achillea millefolium, Bromus hordeaceus,
Hypochaeris radicata, Luzula campestris, Ranuncu-
lus acris, Rumex acetosella, and Taraxacum officinale)
neutral PSFs, and 1 species (A. odoratum) negative PSFs
(Fig. 2). However, when grown with herbivores final bio-
mass of A. odoratum was greater on home soils relative to
away soils (i.e., PSFs were positive). Because herbivory was
greater on home relative to away soils final biomass of 15
species was greater on away soils or similar on home and
away soils; that is, PSF values for these species decreased to
neutral or negative (Fig. 2). PSFs of four species
(A. elatius,A. millefolium,L. campestris, andR. acris) that
in general showed low levels of damage and no difference
in biomass removal between home and away soils, were not
affected by herbivory (Fig. 2). Across all species, PSFswere
positive in the presence (0.235 � 0.031) and negative in the
absence (�0.167 � 0.03) of herbivores (Fig. 2).
The average difference in final biomass between spe-

cies pairs on home soils was 41% (e.g., species A pro-
duced 100 g biomass and species B produced 141 g
biomass), whereas, in contrast, the average difference in
biomass between soil types (i.e., the PSF effect) was
20%.

Correlations with landscape abundance

With herbivory, PSF values were weakly positively cor-
related with plant landscape abundance (F1,18 = 3.12;
P = 0.092; R2 = 0.10; Fig. 3), but there was no correla-
tion without herbivory (F1,18 = 0.078; P = 0.784; R2 = 0;
Fig. 3). When biomass data were removed from the out-
lier species, A. elatius improved correlations. Without this
species both the � and +herbivory PSFs were positively
correlated with species landscape abundances (�her-
bivory: F1,17 = 3.65, P = 0.073, R2 = 0.18; +herbivory:
F1,17 = 16.64, P < 0.001, R2 = 0.49; see Fig. 3).

DISCUSSION

In this study, we tested plant biomass production in
response to home and away soils (i.e., PSF effects) in the
presence and absence of aboveground insect herbivores for
20 grassland species. We found PSF values with herbivory
were correlated with plant abundance on the landscape,
whereas PSF values without herbivory showed no or only
weak correlations. Without herbivores, PSF effects were
positive for most species because plant growth was greater
on home than away soils. Further, shoot N concentrations
were greater on home than away soils. Not surprisingly,
herbivory was greater on plants with higher shoot N con-
centrations (i.e., mostly on plants on home soils). In fact,
herbivory had a greater negative effect on plant biomass
than effects of soils, so even though plants increased their
own growth on self-cultivated soils, the net effect of both
PSF and herbivory was that plants had less biomass on
home vs. away soils. This net effect appeared to be biologi-
cally relevant because combined effects of growth responses
to soils (i.e., PSFs) and herbivory were better correlated

FIG. 2. Plant–soil feedbacks (PSFs) for 20 plant species grown without (blank) and with (gray) aboveground insect herbivores. See
Table 1 for species codes. Data represent mean � SE (n = 10). Asterisks above/below bars represent significant differences in plant
growth when grown in home vs. away soils after one-sample t tests. Asterisks above bar pairs represent significant differences between
PSFs measured in the presence vs. absence of aboveground herbivores for each species: *P < 0.05; (*) P < 0.1. Ae, Arrhenatherum ela-
tius; Am, Achillea millefolium; Ao, Anthoxanthum odoratum; Bh, Bromus hordeaceus; Bs, Bromus sterilis; Dg, Dactylis glomerata; Fb,
Festuca brevipila; Hl,Holcus lanatus; Hp,Helictotrichon pubescens; Hr,Hypochaeris radicata; Lc, Luzula campestris; Lco, Lotus cornic-
ulatus; Pl, Plantago lanceolata; Pp, Poa pratensis; Ra, Ranunculus acris; Rac, Rumex acetosella; Rt, Rumex thyrsiflorus; Td, Trifolium
dubium; To, Taraxacum officinale; Tp, Trifolium pratense.
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with plant landscape abundance than PSF values without
herbivory. Results suggest that herbivory can change and
override PSF effects and is more important for landscape
abundance than PSF effects alone, and furthermore pro-
vide an example of a likely mechanism that can explainwhy
greenhouse and field PSF experiments may produce differ-
ent results (Heinze et al. 2016, Forero et al. 2019).

Landscape abundance

The plant community in the investigated meadow can be
assigned to the Arrhenatherion association (Dierschke
1997) in which A. elatius is by far the most dominant ele-
ment (cover: 52.17% � 11.27%). Previous studies in the
same system revealed thatA. elatius shows almost no dam-
age by aboveground herbivory and commonly neutral
PSFs that are not changed by herbivore presence (Heinze
et al. 2016, Heinze and Joshi 2018). Because it is an outlier

in several traits, we performed correlations with and with-
out this species. These correlations revealed that without
herbivores there were no or only weak correlations between
PSFs and landscape abundance. With herbivores, PSF val-
ueswere positively correlatedwith landscape abundance. In
other words, plants with more positive PSF effects were
more abundant on the landscape. That PSF values in the
presence of herbivores were better correlated with land-
scape abundance of the species and not in the absence of
herbivores makes sense, because the observed landscape
abundance, and abundance in general, is influenced by the
interactive effects of many factors, including PSF effects
and aboveground herbivory (Wardle et al. 2004). Such
combined effects of PSF and herbivory are neglected in
PSF greenhouse experiments, and this might explain,
besides the different growth conditions, why few studies
have found correlations between PSF and landscape abun-
dance (e.g., Klironomos 2002, Mangan et al. 2010) and

FIG. 3. Relationship between plant–soil feedback (PSF) and local abundance for 20 and 19 plant species, respectively (excluding
the outlier species Arrhenatherum elatius [Ae]) when grown (a) without and (b) with aboveground insect herbivores. See Table 1 for
species codes. Asterisks represent significance: (*) P < 0.1; ***P < 0.001. Ae, Arrhenatherum elatius; Am, Achillea millefolium; Ao,
Anthoxanthum odoratum; Bh, Bromus hordeaceus; Bs, Bromus sterilis; Dg, Dactylis glomerata; Fb, Festuca brevipila; Hl,Holcus lana-
tus; Hp, Helictotrichon pubescens; Hr, Hypochaeris radicata; Lc, Luzula campestris; Lco, Lotus corniculatus; Pl, Plantago lanceolata;
Pp, Poa pratensis; Ra, Ranunculus acris; Rac, Rumex acetosella; Rt, Rumex thyrsiflorus; Td, Trifolium dubium; To, Taraxacum offici-
nale; Tp, Trifolium pratense.
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many have not (e.g., Reinhart 2012, Bauer et al. 2015,
Heinze et al. 2015a, Kulmatiski 2016).We suggest that pos-
itive correlations are more likely to be found between field-
based PSF measurements and plant landscape abundance
because field-based PSF measurements inherently include
herbivory effects (see Kulmatiski et al. 2017, Kulmatiski
2018). Taken together, results revealed that correlations of
PSF values measured with herbivory better explained the
species abundance on the landscape than PSF effects alone.
This suggests that besides PSF effects, other species traits
that impact plants’ biomass and thus competitiveness, such
as palatability, aremore important for abundance of aplant
species on the landscape than PSFs. Consequently, in
future experiments, there is a need to incorporate further
biotic interactions, such as herbivory.
It makes intuitive sense that plants that increase their

own growth through changes in the soil would be more
abundant on the landscape. This idea has been supported
by mathematical PSF models (Bever et al. 1997, Chisholm
and Muller-Landau 2011, Mack and Bever 2014). These
models, however, often assume that plants are competi-
tively equivalent (Bever et al. 1997, Bever 2003). Under this
assumption, plants with the most positive PSF will out-
compete others. Of course, plants are not competitively
equivalent. As a result, PSF effects must be large relative to
intrinsic differences in growth rates to affect relative abun-
dance (Kulmatiski et al. 2016, 2017). In this study, the aver-
age difference in final biomass among species was 41%,
whereas the average difference in growth among soil types
(i.e., PSF effect) was 20%. As a result, it was unlikely that
PSF effects would “overcome” intrinsic differences in
growth among species. Hence, in addition to herbivory
effects, an integration of competition effects into PSF
experiments might further strengthen our understanding of
the importance of PSFs in explaining plant local abun-
dance, also because soil biota act differently when interact-
ing with single plants compared to plants in mixture
(Heinze et al. 2015b).

Effects of herbivory on plant growth and PSFs

Without herbivory, most plant species experienced posi-
tive PSF effects, that is, plants grew larger on home than
away soils. The use of a sand growth medium that showed
lower plant-available phosphorus concentration compared
to the meadow soil (see Appendix S1: Table S1; Heinze
et al. 2016, Heinze and Joshi 2018) may have stressed plants
and possibly encouraged symbiotic relationships between
plants and soil organisms, resulting in positive PSF effects.
Because PSF effects without herbivory were positive, our
results are not consistent with the commonly assumed role
of PSFs as a mechanism of negative frequency dependence
(i.e., Janzen–Connell effects; Petermann et al. 2008) and
that dominant species in this system are suppressed by soil
biota (de Deyn et al. 2003). Instead, our results suggest that
landscape abundance is determined more by plant size and
competitive ability (Aarssen 2015, Heinze et al. 2015a),
than on species replacement caused by negative PSFs.

Herbivory changed the outcome of PSFs for most spe-
cies in our experiment because damages by insect herbi-
vores were soil-specific (i.e., differed between home vs.
away soils). Generally, herbivory had little effect on
plant growth on away soils, but decreased final biomass
on home soils by 36%. This is in line with findings of a
recent study, which showed that soil legacy effects
impact the plant biomass consumption of aboveground
insect herbivores (Heinen et al. 2019). However, as PSF
calculations are mostly based on biomass ratios (home
vs. away; see Brinkman et al. 2010) it is clear that any
disproportional plant biomass removal by insect herbi-
vores in home relative to away soils will change the out-
come of PSFs (see also Heinze et al. 2019).
It is known that insect herbivores, because of their high

protein content and poor N use efficiency, need to ingest
relatively large amounts of N (Mattson 1980, Bernays and
Chapman 1994) and thus prefer to feed on plants with high
N content (Berner et al. 2005, Behmer 2009). In our experi-
ment, herbivores may have been attracted to plants in
which soil effects encouraged highly productive and nutri-
ent-rich plants (White et al. 2015, Stajkovi�c-Srbinovi�c et al.
2016, Heinze et al. 2019). This is supported by the shoot N
concentrations measured in this experiment. Most species
that showed highest shoot N concentrations on home soil
compared to away soils also experienced highest biomass
removal on home soils. For these species, PSFs decreased
(i.e., PSFs became more negative) under herbivory. In con-
trast, A. odoratum showed the highest shoot N concentra-
tion and damages by herbivores in away soils, resulting in
positive PSFs. Species whose shoot N concentration did
not differ between home and away soil also did not differ in
damages by herbivores between soils or PSF effects.
Furthermore, PSF effects may have changed plant sec-

ondary compounds in ways that affected palatability (e.g.,
Massey et al. 2007, Kostenko et al. 2012, Kos et al. 2015). It
is also possible that generalist pathogens on away soils
induced secondary defense plant responses that inhibited
herbivory (Zhu et al. 2018) and thus generated positive
PSFs for most species. In any case, it was clear that for most
species the negative effect of herbivory on the outcome of
PSFwas caused by herbivore response to plant growth (i.e.,
high shoot N concentration) on home soils and not to
plants on away soils. Hence, by testing a relatively large set
of plant species, this study confirms that aboveground her-
bivory has the potential to influence the outcome of PSFs
(Heinze and Joshi 2018) and indicate that herbivory,
depending on its intensity, is more important for plant spe-
cies performance than PSFeffects (Heinze et al. 2019).

CONCLUSIONS

Taken together, herbivory by aboveground insects
affected the outcome of PSFs for most species, and com-
bined effects of herbivory and PSFs better explained the
landscape abundance of the plant species than PSF
effects alone. Overall, these results suggest that effects of
herbivory are stronger than PSF effects for final biomass
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and that PSFs, when measured with herbivory, are
important to plant landscape abundance, though the
mechanism through which PSFs affect landscape abun-
dance remains unclear. Hence, our results highlight that
PSF research needs to consider important (above-
ground) biotic interactions between plants and their
consumers, in order to gain a more comprehensive
understanding of their roles in shaping PSFs.
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