317 research outputs found
The impact of dopaminergic treatment over cognitive networks in Parkinson's disease : Stemming the tide?
Altres ajuts: Fundació la Marató de TV3/20142910Dopamine-replacing therapies are an effective treatment for the motor aspects of Parkinson's disease. However, its precise effect over the cognitive resting-state networks is not clear; whether dopaminergic treatment normalizes their functional connectivity-as in other networks- and the links with cognitive decline are presently unknown. We recruited 35 nondemented PD patients and 16 age-matched controls. Clinical and neuropsychological assessments were performed at baseline, and conversion to dementia was assessed in a 10 year follow-up. Structural and functional brain imaging were acquired in both the ON and practical OFF conditions. We assessed functional connectivity in both medication states compared to healthy controls, connectivity differences within participants related to the ON/OFF condition, and baseline connectivity of PD participants that converted to dementia compared to those who did not convert. PD participants showed and increased frontoparietal connectivity compared to controls: a pattern of higher connectivity between salience (SN) and default-mode (DMN) networks both in the ON and OFF states. Within PD patients, this higher SN-DMN connectivity characterized the participants in the ON state, while within-DMN connectivity prevailed in the OFF state. Interestingly, participants who converted to dementia also showed higher SN-DMN connectivity in their baseline ON scans compared to nonconverters. To conclude, PD patients showed higher frontoparietal connectivity in cognitive networks compared to healthy controls, irrespective of medication status, but dopaminergic treatment specifically promoted SN-DM hyperconnectivity
The impact of dopaminergic treatment over cognitive networks in Parkinson's disease: Stemming the tide?
Dopamine-replacing therapies are an effective treatment for the motor aspects of Parkinson's disease. However, its precise effect over the cognitive resting-state networks is not clear; whether dopaminergic treatment normalizes their functional connectivity-as in other networks- and the links with cognitive decline are presently unknown. We recruited 35 nondemented PD patients and 16 age-matched controls. Clinical and neuropsychological assessments were performed at baseline, and conversion to dementia was assessed in a 10 year follow-up. Structural and functional brain imaging were acquired in both the ON and practical OFF conditions. We assessed functional connectivity in both medication states compared to healthy controls, connectivity differences within participants related to the ON/OFF condition, and baseline connectivity of PD participants that converted to dementia compared to those who did not convert. PD participants showed and increased frontoparietal connectivity compared to controls: a pattern of higher connectivity between salience (SN) and default-mode (DMN) networks both in the ON and OFF states. Within PD patients, this higher SN-DMN connectivity characterized the participants in the ON state, while within-DMN connectivity prevailed in the OFF state. Interestingly, participants who converted to dementia also showed higher SN-DMN connectivity in their baseline ON scans compared to nonconverters. To conclude, PD patients showed higher frontoparietal connectivity in cognitive networks compared to healthy controls, irrespective of medication status, but dopaminergic treatment specifically promoted SN-DM hyperconnectivity
Neural signatures of predictive language processing in Parkinson's disease with and without mild cognitive impairment
Altres ajuts: Fundació la Marató de TV3 (2014/U/477, 20142910)Cognitive deficits are common in Parkinson's disease (PD), with some PD patients meeting criteria for mild cognitive impairment (MCI). An unaddressed question is whether linguistic prediction is preserved in PD. This ability is nowadays deemed crucial for achieving fast and efficient comprehension, and it may be negatively impacted by cognitive deterioration in PD. To fill this gap of knowledge, we used event-related potentials (ERPs) to evaluate mechanisms of linguistic prediction in a sample of PD patients (on dopamine compensation) with and without MCI. To this end, participants read sentence contexts that were predictive or not about a sentence-final word. The final word appeared after one sec, matching or mismatching the prediction. The introduction of the interval allowed to capture neural responses both before and after sentence-final words, reflecting semantic anticipation and semantic processing. PD patients with normal cognition (N = 58) showed ERP responses comparable to those of matched controls. Specifically, in predictive contexts, a slow negative potential developed prior to sentence-final words, reflecting semantic anticipation. Later, expected words elicited reduced N400 responses (compared to unexpected words), indicating facilitated semantic processing. PD patients with MCI (N = 20) showed, in addition, a prolongation of the N400 congruency effect (compared to matched PD patients without MCI), indicating that further cognitive decline impacts semantic processing. Finally, lower verbal fluency scores correlated with prolonged N400 congruency effects and with reduced pre-word differences in all PD patients (N = 78). This relevantly points to a role of deficits in temporal-dependent mechanisms in PD, besides prototypical frontal dysfunction, in altered semantic anticipation and semantic processing during sentence comprehension
Assessment of Safety and Efficacy of Safinamide as a Levodopa Adjunct in Patients With Parkinson Disease and Motor Fluctuations A Randomized Clinical Trial
IMPORTANCE:
Although levodopa remains the most effective oral pharmacotherapy for Parkinson disease (PD), its use is often limited by wearing off effect and dyskinesias. Management of such complications continues to be a significant challenge.
OBJECTIVE:
To investigate the efficacy and safety of safinamide (an oral aminoamide derivative with dopaminergic and nondopaminergic actions) in levodopa-treated patients with motor fluctuations.
DESIGN, SETTING, AND PARTICIPANTS:
From March 5, 2009, through February 23, 2012, patients from academic PD care centers were randomized (1:1 ratio) to receive double-blind adjunctive safinamide or placebo for 24 weeks. All patients had idiopathic PD with “off” time (time when medication effect has worn off and parkinsonian features, including bradykinesia and rigidity, return) of greater than 1.5 hours per day (excluding morning akinesia). Their pharmacotherapy included oral levodopa plus benserazide or carbidopa in a regimen that had been stable for 4 weeks or longer. During screening, each patient’s regimen was optimized to minimize motor fluctuations. Study eligibility required that after 4 weeks of optimized treatment, the patients still have more than 1.5 hours per day of off time. Adverse events caused the premature study discontinuation of 12 individuals (4.4%) in the safinamide group and 10 individuals (3.6%) in the placebo group.
INTERVENTIONS:
Patients took safinamide or placebo as 1 tablet daily with breakfast. If no tolerability issues arose by day 14, the starting dose, 50 mg, was increased to 100 mg.
MAIN OUTCOMES AND MEASURES:
The prespecified primary outcome was each treatment group’s mean change from baseline to week 24 (or last “on” treatment value) in daily “on” time (relief of parkinsonian motor features) without troublesome dyskinesia, as assessed from diary data.
RESULTS:
At 119 centers, 549 patients were randomized (mean [SD] age, 61.9 [9.0] years; 334 male [60.8%] and 371 white [67.6%]): 274 to safinamide and 275 to placebo. Among them, 245 (89.4%) receiving safinamide and 241 (87.6%) receiving placebo completed the study. Mean (SD) change in daily on time without troublesome dyskinesia was +1.42 (2.80) hours for safinamide, from a baseline of 9.30 (2.41) hours, vs +0.57 (2.47) hours for placebo, from a baseline of 9.06 (2.50) hours (least-squares mean difference, 0.96 hour; 95% CI, 0.56-1.37 hours; P < .001, analysis of covariance). The most frequently reported adverse event was dyskinesia (in 40 [14.6%] vs 15 [5.5%] and as a severe event in 5 [1.8%] vs 1 [0.4%]).
CONCLUSIONS AND RELEVANCE:
The outcomes of this trial support safinamide as an effective adjunct to levodopa in patients with PD and motor fluctuations to improve on time without troublesome dyskinesia and reduce wearing off
Specific patterns of brain alterations underlie distinct clinical profiles in Huntington's disease
Huntington's disease (HD) is a genetic neurodegenerative disease which involves a triad of motor, cognitive and psychiatric disturbances. However, there is great variability in the prominence of each type of symptom across individuals. The neurobiological basis of such variability remains poorly understood but would be crucial for better tailored treatments. Multivariate multimodal neuroimaging approaches have been successful in disentangling these profiles in other disorders. Thus we applied for the first time such approach to HD. We studied the relationship between HD symptom domains and multimodal measures sensitive to grey and white matter structural alterations. Forty-three HD gene carriers (23 manifest and 20 premanifest individuals) were scanned and underwent behavioural assessments evaluating motor, cognitive and psychiatric domains. We conducted a multimodal analysis integrating different structural neuroimaging modalities measuring grey matter volume, cortical thickness and white matter diffusion indices - fractional anisotropy and radial diffusivity. All neuroimaging measures were entered into a linked independent component analysis in order to obtain multimodal components reflecting common inter-subject variation across imaging modalities. The relationship between multimodal neuroimaging independent components and behavioural measures was analysed using multiple linear regression. We found that cognitive and motor symptoms shared a common neurobiological basis, whereas the psychiatric domain presented a differentiated neural signature. Behavioural measures of different symptom domains correlated with different neuroimaging components, both the brain regions involved and the neuroimaging modalities most prominently associated with each type of symptom showing differences. More severe cognitive and motor signs together were associated with a multimodal component consisting in a pattern of reduced grey matter, cortical thickness and white matter integrity in cognitive and motor related networks. In contrast, depressive symptoms were associated with a component mainly characterised by reduced cortical thickness pattern in limbic and paralimbic regions. In conclusion, using a multivariate multimodal approach we were able to disentangle the neurobiological substrates of two distinct symptom profiles in HD: one characterised by cognitive and motor features dissociated from a psychiatric profile. These results open a new view on a disease classically considered as a uniform entity and initiates a new avenue for further research considering these qualitative individual differences
Specific patterns of brain alterations underlie distinct clinical profiles in Huntington's disease
Huntington's disease (HD) is a genetic neurodegenerative disease which involves a triad of motor, cognitive and psychiatric disturbances. However, there is great variability in the prominence of each type of symptom across individuals. The neurobiological basis of such variability remains poorly understood but would be crucial for better tailored treatments. Multivariate multimodal neuroimaging approaches have been successful in disentangling these profiles in other disorders. Thus we applied for the first time such approach to HD. We studied the relationship between HD symptom domains and multimodal measures sensitive to grey and white matter structural alterations. Forty-three HD gene carriers (23 manifest and 20 premanifest individuals) were scanned and underwent behavioural assessments evaluating motor, cognitive and psychiatric domains. We conducted a multimodal analysis integrating different structural neuroimaging modalities measuring grey matter volume, cortical thickness and white matter diffusion indices - fractional anisotropy and radial diffusivity. All neuroimaging measures were entered into a linked independent component analysis in order to obtain multimodal components reflecting common inter-subject variation across imaging modalities. The relationship between multimodal neuroimaging independent components and behavioural measures was analysed using multiple linear regression. We found that cognitive and motor symptoms shared a common neurobiological basis, whereas the psychiatric domain presented a differentiated neural signature. Behavioural measures of different symptom domains correlated with different neuroimaging components, both the brain regions involved and the neuroimaging modalities most prominently associated with each type of symptom showing differences. More severe cognitive and motor signs together were associated with a multimodal component consisting in a pattern of reduced grey matter, cortical thickness and white matter integrity in cognitive and motor related networks. In contrast, depressive symptoms were associated with a component mainly characterised by reduced cortical thickness pattern in limbic and paralimbic regions. In conclusion, using a multivariate multimodal approach we were able to disentangle the neurobiological substrates of two distinct symptom profiles in HD: one characterised by cognitive and motor features dissociated from a psychiatric profile. These results open a new view on a disease classically considered as a uniform entity and initiates a new avenue for further research considering these qualitative individual differences
White matter cortico-striatal tracts predict apathy subtypes in Huntington's disease
BACKGROUND: Apathy is the neuropsychiatric syndrome that correlates most highly with Huntington's disease progression, and, like early patterns of neurodegeneration, is associated with lesions to cortico-striatal connections. However, due to its multidimensional nature and elusive etiology, treatment options are limited. OBJECTIVES: To disentangle underlying white matter microstructural correlates across the apathy spectrum in Huntington's disease. METHODS: Forty-six Huntington's disease individuals (premanifest (N = 22) and manifest (N = 24)) and 35 healthy controls were scanned at 3-tesla and underwent apathy evaluation using the short-Problem Behavior Assessment and short-Lille Apathy Rating Scale, with the latter being characterized into three apathy domains, namely emotional, cognitive, and auto-activation deficit. Diffusion tensor imaging was used to study whether individual differences in specific cortico-striatal tracts predicted global apathy and its subdomains. RESULTS: We elucidate that apathy profiles may develop along differential timelines, with the auto-activation deficit domain manifesting prior to motor onset. Furthermore, diffusion tensor imaging revealed that inter-individual variability in the disruption of discrete cortico-striatal tracts might explain the heterogeneous severity of apathy profiles. Specifically, higher levels of auto-activation deficit symptoms significantly correlated with increased mean diffusivity in the right uncinate fasciculus. Conversely, those with severe cognitive apathy demonstrated increased mean diffusivity in the right frontostriatal tract and left dorsolateral prefrontal cortex to caudate nucleus tract. CONCLUSIONS: The current study provides evidence that white matter correlates associated with emotional, cognitive, and auto-activation subtypes may elucidate the heterogeneous nature of apathy in Huntington's disease, as such opening a door for individualized pharmacological management of apathy as a multidimensional syndrome in other neurodegenerative disorders
Diagnostic Accuracy of Magnetic Resonance Imaging Measures of Brain Atrophy Across the Spectrum of Progressive Supranuclear Palsy and Corticobasal Degeneration
The accurate diagnosis of progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) is hampered by imperfect clinical-pathological correlations.To assess and compare the diagnostic value of the magnetic resonance parkinsonism index (MRPI) and other magnetic resonance imaging-based measures of cerebral atrophy to differentiate between PSP, CBD, and other neurodegenerative diseases.This prospective diagnostic study included participants with 4-repeat tauopathies (4RT), PSP, CBD, other neurodegenerative diseases and available MRI who appeared in the University of California, San Francisco, Memory and Aging Center database. Data were collected from October 27, 1994, to September 29, 2019. Data were analyzed from March 1 to September 14, 2021.The main outcome of this study was the neuropathological diagnosis of PSP or CBD. The clinical diagnosis at the time of the MRI acquisition was noted. The imaging measures included the MRPI, cortical thickness, subcortical volumes, including the midbrain, pons, and superior cerebellar peduncle volumes. Multinomial logistic regression models (MLRM) combining different cortical and subcortical regions were defined to discriminate between PSP, CBD, and other pathologies. The areas under the receiver operating characteristic curves (AUROC) and cutoffs were calculated to differentiate between PSP, CBD, and other diseases.Of the 326 included participants, 176 (54%) were male, and the mean (SD) age at MRI was 64.1 (8.0) years. The MRPI showed good diagnostic accuracy for the differentiation between PSP and all other pathologies (accuracy, 87%; AUROC, 0.90; 95% CI, 0.86-0.95) and between 4RT and other pathologies (accuracy, 80%; AUROC, 0.82; 95% CI, 0.76-0.87), but did not allow the discrimination of participants with CBD. Its diagnostic accuracy was lower in the subgroup of patients without the canonical PSP-Richardson syndrome (PSP-RS) or probable corticobasal syndrome (CBS) at MRI. MLRM combining cortical and subcortical measurements showed the highest accuracy for the differentiation between PSP and other pathologies (accuracy, 95%; AUROC, 0.98; 95% CI, 0.97-0.99), CBD and other pathologies (accuracy, 83%; AUROC, 0.86; 95% CI, 0.81-0.91), 4RT and other pathologies (accuracy, 89%; AUROC, 0.94; 95% CI, 0.92-0.97), and PSP and CBD (accuracy, 91%; AUROC, 0.95; 95% CI, 0.91-0.99), even in participants without PSP-RS or CBS at MRI.In this study, the combination of widely available cortical and subcortical measures of atrophy on MRI discriminated between PSP, CBD, and other pathologies and could be used to support the diagnosis of 4RT in clinical practice
Telling true from false : cannabis users show increased susceptibility to false memories
Altres ajuts: Plan Nacional Sobre Drogas i Formación de Profesorado Universitario (FPU)Previous studies on the neurocognitive impact of cannabis use have found working and declarative memory deficits that tend to normalize with abstinence. An unexplored aspect of cognitive function in chronic cannabis users is the ability to distinguish between veridical and illusory memories, a crucial aspect of reality monitoring that relies on adequate memory function and cognitive control. Using functional magnetic resonance imaging, we show that abstinent cannabis users have an increased susceptibility to false memories, failing to identify lure stimuli as events that never occurred. In addition to impaired performance, cannabis users display reduced activation in areas associated with memory processing within the lateral and medial temporal lobe (MTL), and in parietal and frontal brain regions involved in attention and performance monitoring. Furthermore, cannabis consumption was inversely correlated with MTL activity, suggesting that the drug is especially detrimental to the episodic aspects of memory. These findings indicate that cannabis users have an increased susceptibility to memory distortions even when abstinent and drug-free, suggesting a long-lasting compromise of memory and cognitive control mechanisms involved in reality monitoring
Understanding visual hallucinations: a new synthesis.
Despite decades of research, we do not definitively know how people sometimes see things that are not there. Eight models of complex visual hallucinations have been published since 2000, including Deafferentation, Reality Monitoring, Perception and Attention Deficit, Activation, Input, and Modulation, Hodological, Attentional Networks, Active inference, and Thalamocortical Dysrhythmia Default Mode Network Decoupling. Each was derived from different understandings of brain organisation. To reduce this variability, representatives from each research group agreed an integrated Visual Hallucination Framework that is consistent with current theories of veridical and hallucinatory vision. The Framework delineates cognitive systems relevant to hallucinations. It allows a systematic, consistent, investigation of relationships between the phenomenology of visual hallucinations and changes in underpinning cognitive structures. The episodic nature of hallucinations highlights separate factors associated with the onset, persistence, and end of specific hallucinations suggesting a complex relationship between state and trait markers of hallucination risk. In addition to a harmonised interpretation of existing evidence, the Framework highlights new avenues of research, and potentially, new approaches to treating distressing hallucinations
- …