258 research outputs found
Controlling high-harmonic generation and above-threshold ionization with an attosecond-pulse train
We perform a detailed analysis of how high-order harmonic generation (HHG)
and above-threshold ionization (ATI) can be controlled by a time-delayed
attosecond-pulse train superposed to a strong, near-infrared laser field. In
particular we show that the high-harmonic and photoelectron intensities, the
high-harmonic plateau structure and cutoff energies, and the ATI angular
distributions can be manipulated by changing this delay. This is a direct
consequence of the fact that the attosecond pulse train can be employed as a
tool for constraining the instant an electronic wave packet is ejected in the
continuum. A change in such initial conditions strongly affects its subsequent
motion in the laser field, and thus HHG and ATI. In our studies, we employ the
Strong-Field Approximation and explain the features observed in terms of
interference effects between various electron quantum orbits. Our results are
in agreement with recent experimental findings and theoretical studies
employing purely numerical methods.Comment: 10 pages revtex and 6 figures (eps files
Time-dependent Hartree-Fock theory of charge exchange: Application to He2+ + He
An application of the time-dependent Hartree-Fock (TDHF) theory of charge transfer in atomic collisions is presented. Probabilities for elastic and double symmetric charge exchange are calculated for a fixed laboratory scattering angle and for collision energies from 10 to 70 keV. The TDHF equations are solved using finite difference techniques and propagated in time using the Peaceman-Rachford alternating-direction implicit method. Plots of time-evolved charge densities are presented also
Attosecond Control of Ionization Dynamics
Attosecond pulses can be used to initiate and control electron dynamics on a
sub-femtosecond time scale. The first step in this process occurs when an atom
absorbs an ultraviolet photon leading to the formation of an attosecond
electron wave packet (EWP). Until now, attosecond pulses have been used to
create free EWPs in the continuum, where they quickly disperse. In this paper
we use a train of attosecond pulses, synchronized to an infrared (IR) laser
field, to create a series of EWPs that are below the ionization threshold in
helium. We show that the ionization probability then becomes a function of the
delay between the IR and attosecond fields. Calculations that reproduce the
experimental results demonstrate that this ionization control results from
interference between transiently bound EWPs created by different pulses in the
train. In this way, we are able to observe, for the first time, wave packet
interference in a strongly driven atomic system.Comment: 8 pages, 4 figure
Theoretical analysis of dynamic chemical imaging with lasers using high-order harmonic generation
We report theoretical investigations of the tomographic procedure suggested
by Itatani {\it et al.} [Nature, {\bf 432} 867 (2004)] for reconstructing
highest occupied molecular orbitals (HOMO) using high-order harmonic generation
(HHG). Using the limited range of harmonics from the plateau region, we found
that under the most favorable assumptions, it is still very difficult to obtain
accurate HOMO wavefunction, but the symmetry of the HOMO and the internuclear
separation between the atoms can be accurately extracted, especially when
lasers of longer wavelengths are used to generate the HHG. We also considered
the possible removal or relaxation of the approximations used in the
tomographic method in actual applications. We suggest that for chemical
imaging, in the future it is better to use an iterative method to locate the
positions of atoms in the molecule such that the resulting HHG best fits the
macroscopic HHG data, rather than by the tomographic method.Comment: 13 pages, 14 figure
Pulse-duration dependence of high-order harmonic generation with coherent superposition state
We make a systematic study of high-order harmonic generation (HHG) in a
He-like model ion when the initial states are prepared as a coherent
superposition of the ground state and an excited state. It is found that,
according to the degree of the ionization of the excited state, the laser
intensity can be divided into three regimes in which HHG spectra exhibit
different characteristics. The pulse-duration dependence of the HHG spectra in
these regimes is studied. We also demonstrate evident advantages of using
coherent superposition state to obtain high conversion efficiency. The
conversion efficiency can be increased further if ultrashort laser pulses are
employed
Quantum interference in laser-induced nonsequential double ionization in diatomic molecules: the role of alignment and orbital symmetry
We address the influence of the orbital symmetry and of the molecular
alignment with respect to the laser-field polarization on laser-induced
nonsequential double ionization of diatomic molecules, in the length and
velocity gauges. We work within the strong-field approximation and assume that
the second electron is dislodged by electron-impact ionization, and also
consider the classical limit of this model. We show that the electron-momentum
distributions exhibit interference maxima and minima due to the electron
emission at spatially separated centers. The interference patterns survive the
integration over the transverse momenta for a small range of alignment angles,
and are sharpest for parallel-aligned molecules. Due to the contributions of
transverse-momentum components, these patterns become less defined as the
alignment angle increases, until they disappear for perpendicular alignment.
This behavior influences the shapes and the peaks of the electron momentum
distributions.Comment: 12 pages, 7 figures; some discussions have been extended and some
figures slightly modifie
Elliptical Trajectories in Nonsequential Double Ionization
Using a classical ensemble method, nonsequential double ionization is
predicted to exist with elliptical and circular polarization. Recollision is
found to be the underlying mechanism and it is only possible via elliptical
trajectories.Comment: Submitted to New Journal of Physic
Interference effects in above-threshold ionization from diatomic molecules: determining the internuclear separation
We calculate angle-resolved above-threshold ionization spectra for diatomic
molecules in linearly polarized laser fields, employing the strong-field
approximation. The interference structure resulting from the individual
contributions of the different scattering scenarios is discussed in detail,
with respect to the dependence on the internuclear distance and molecular
orientation. We show that, in general, the contributions from the processes in
which the electron is freed at one center and rescatters off the other obscure
the interference maxima and minima obtained from single-center processes.
However, around the boundary of the energy regions for which rescattering has a
classical counterpart, such processes play a negligible role and very clear
interference patterns are observed. In such energy regions, one is able to
infer the internuclear distance from the energy difference between adjacent
interference minima.Comment: 10 pages, 8 figures; discussions slightly modified and an additional
figure inserted for clarit
Macroscopic studies of short-pulse high-order harmonic generation using the time-dependent Schrödinger equation
We consider high harmonic generation by ultrashort (27–108 fs) laser pulses and calculate the macroscopic response of a collection of atoms to such a short pulse. We show how the harmonic spectrum after propagation through the medium is significantly different from the single-atom spectrum. We use single-atom data calculated by integration of the time-dependent Schrödinger equation and propose a method, based on an adiabatic approximation, to extract the data necessary to perform a propagation calculation. © 1998 The American Physical Society
Influence of Phase Matching on the Cooper Minimum in Ar High Harmonic Spectra
We study the influence of phase matching on interference minima in high
harmonic spectra. We concentrate on structures in atoms due to interference of
different angular momentum channels during recombination. We use the Cooper
minimum (CM) in argon at 47 eV as a marker in the harmonic spectrum. We measure
2d harmonic spectra in argon as a function of wavelength and angular
divergence. While we identify a clear CM in the spectrum when the target gas
jet is placed after the laser focus, we find that the appearance of the CM
varies with angular divergence and can even be completely washed out when the
gas jet is placed closer to the focus. We also show that the argon CM appears
at different wavelengths in harmonic and photo-absorption spectra measured
under conditions independent of any wavelength calibration. We model the
experiment with a simulation based on coupled solutions of the time-dependent
Schr\"odinger equation and the Maxwell wave equation, including both the single
atom response and macroscopic effects of propagation. The single atom
calculations confirm that the ground state of argon can be represented by its
field free symmetry, despite the strong laser field used in high harmonic
generation. Because of this, the CM structure in the harmonic spectrum can be
described as the interference of continuum and channels, whose relative
phase jumps by at the CM energy, resulting in a minimum shifted from the
photoionization result. We also show that the full calculations reproduce the
dependence of the CM on the macroscopic conditions. We calculate simple phase
matching factors as a function of harmonic order and explain our experimental
and theoretical observation in terms of the effect of phase matching on the
shape of the harmonic spectrum. Phase matching must be taken into account to
fully understand spectral features related to HHG spectroscopy
- …