1,295 research outputs found

    The spectroscopic Hertzsprung-Russell diagram

    Full text link
    The Hertzsprung-Russell diagram is an essential diagnostic diagram for stellar structure and evolution, which has now been in use for more than 100 years. Our spectroscopic Hertzsprung-Russell (sHR) diagram shows the inverse of the flux-mean gravity versus the effective temperature. Observed stars whose spectra have been quantitatively analyzed can be entered in this diagram without the knowledge of the stellar distance or absolute brightness. Observed stars can be as conveniently compared to stellar evolution calculations in the sHR diagram as in the Hertzsprung-Russell diagram. However, at the same time, our ordinate is proportional to the stellar mass-to-luminosity ratio, which can thus be directly determined. For intermediate- and low-mass star evolution at constant mass, we show that the shape of an evolutionary track in the sHR diagram is identical to that in the Hertzsprung-Russell diagram. We also demonstrate that for hot stars, their stellar Eddington factor can be directly read off the sHR diagram. For stars near their Eddington limit, we argue that a version of the sHR diagram may be useful where the gravity is exchanged by the effective gravity. We discuss the advantages and limitations of the sHR diagram, and show that it can be fruitfully applied to Galactic stars, but also to stars with known distance, e.g., in the LMC or in galaxies beyond the Local Group.Comment: 9 pages, 8 figures, Astronomy and Astrophysics, in pres

    Research Note: Rotation and the wind momentum-luminosity relation for extragalactic distances

    Full text link
    The effects of axial stellar rotation on the wind-momentum relation (WLR) for determining the extragalactic distances are investigated. Despite the fact that the mass loss rates grow quite a lot with rotation, remarkably the effects on the WLR are found to be very small on the average. As an example, for an average orientation angle between the rotation axis and the line of sight, the luminosity would be overestimated by 5.9 % for a star rotating at 90% of its break-up rotational velocity. Different orientation angles between the rotation axis and the line of sight produce some limited scatter.Comment: 4 pages, 1 figure, in press in A&

    Slow Radiation-Driven Wind Solutions of A-Type Supergiants

    Get PDF
    The theory of radiation-driven winds succeeded in describing terminal velocities and mass loss rates of massive stars. However, for A-type supergiants the standard m-CAK solution predicts values of mass loss and terminal velocity higher than the observed values. Based on the existence of a slow wind solution in fast rotating massive stars, we explore numerically the parameter space of radiation-driven flows to search for new wind solutions in slowly rotating stars, that could explain the origin of these discrepancies. We solve the 1-D hydrodynamical equation of rotating radiation-driven winds at different stellar latitudes and explore the influence of ionization's changes throughout the wind in the velocity profile. We have found that for particular sets of stellar and line-force parameters, a new slow solution exists over the entire star when the rotational speed is slow or even zero. In the case of slow rotating A-type supergiant stars the presence of this novel slow solution at all latitudes leads to mass losses and wind terminal velocities which are in agreement with the observed values. The theoretical Wind Momentum-Luminosity Relationship derived with these slow solutions shows very good agreement with the empirical relationship. In addition, the ratio between the terminal and escape velocities, which provides a simple way to predict stellar wind energy and momentum input into the interstellar medium, is also properly traced.Comment: 7 Pages, 3 figures, Astrophysical Journal, Accepte

    Atmospheres and Winds of PN Central Stars

    Get PDF
    The progress over the last years in modelling the atmospheres and winds of PN central stars is reviewed. We discuss the effect of the inclusion of the blanketing by millions of metal lines in NLTE on the diagnostics of photospheric and stellar wind lines, which can be used to determine stellar parameters such as effective temperature, gravity, radius, mass loss rate and distance. We also refer to recent work on the winds of massive O-type stars, which indicates that their winds are possibly inhomogeneous and clumped. We investigate implications from this work on the spectral diagnostics of PN central stars and introduce a method to determine wind clumping factors from the relative strengths of Halpha and HeII 4686. Based on new results we discuss the wind properties of CSPN.Comment: 8 pages, 12 figures; Proceedings, IAU Symposium No. 234, 2006, "Planetary Nebulae in our Galaxy and Beyond", M.J. Barlow and R.H. Mendez, ed

    The potential of Red Supergiants as extra-galactic abundance probes at low spectral resolution

    Full text link
    Red Supergiants (RSGs) are among the brightest stars in the local universe, making them ideal candidates with which to probe the properties of their host galaxies. However, current quantitative spectroscopic techniques require spectral resolutions of R>17,000, making observations of RSGs at distances greater than 1Mpc unfeasible. Here we explore the potential of quantitative spectroscopic techniques at much lower resolutions, R ~2-3000. We take archival J-band spectra of a sample of RSGs in the Solar neighbourhood. In this spectral region the metallic lines of FeI, MgI, SiI and TiI are prominent, while the molecular absorption features of OH, H_2O, CN and CO are weak. We compare these data with synthetic spectra produced from the existing grid of model atmospheres from the MARCS project, with the aim of deriving chemical abundances. We find that all stars studied can be unambiguously fit by the models, and model parameters of log g, effective temperatures Teff, microturbulence and global metal content may be derived. We find that the abundances derived for the stars are all very close to Solar and have low dispersion, with an average of [logZ]=0.13+/-0.14. The values of Teff fit by the models are ~150K cooler than the stars' literature values for earlier spectral types when using the Levesque et al. temperature scale, though this temperature discrepancy has very little systematic effect on the derived abundances as the equivalent widths (EWs) of the metallic lines are roughly constant across the full temperature range of RSGs. Instead, elemental abundances are the dominating factor in the EWs of the diagnostic lines. Our results suggest that chemical abundance measurements of RSGs are possible at low- to medium-resolution, meaning that this technique is a viable infrared-based alternative to measuring abundance trends in external galaxies. [Abridged]Comment: 10 pages, 7 figures. Accepted for publication in MNRAS

    A catalog of planetary nebulae in the elliptical galaxy NGC 4697

    Full text link
    We present a catalog of 535 planetary nebulae discovered in the flattened elliptical galaxy NGC 4697, using the FORS1 Cassegrain spectrograph of the Very Large Telescope of the European Southern Observatory at Cerro Paranal, Chile. The catalog provides positions (x, y coordinates relative to the center of light of NGC 4697, as well as RA, Dec.), and, for almost all PNs, the magnitude m(5007) and the heliocentric radial velocity in km/s.Comment: 16 pages, 5 figures, ApJS in pres
    • …
    corecore