1,008 research outputs found

    Post-depositional impacts on ‘Findlinge' (erratic boulders) and their implications for surface-exposure dating

    Get PDF
    Understanding and interpretation of ‘numbers' produced about the depositional age of an erratic boulder by cosmogenic nuclide surface-exposure dating is important in the construction of glacial chronology. We have sampled three ‘Findlinge' (glacially transported boulders) located on the right-lateral margin of the Aare glacier at Möschberg, Grosshöchstetten, southeast of Bern, with the aim of shedding light on this topic. The boulders have the same depositional, but different post-depositional histories: simple exposure; exhumation; and human impact. This sampling is specially selected for this study, since the boulders showing exhumation and human impact would not have been sampled in a regular surface-exposure dating application. We measured cosmogenic 10Be concentrations and calculated apparent exposure ages that are 13.6±0.5, 18.1±0.8, and 7.5±0.4ka, respectively. The exposure age of the first boulder reflects exhumation. The apparent exposure age of 18.1±0.8ka (erosion-corrected exposure age 19.0±0.9ka) from the second boulder correlates well with the end of the Alpine and global last glacial maximum. The third boulder shows evidence of quarrying as it is surrounded by a rim of excavation material, which is also reflected by the 7.5±0.4ka apparent exposure age. We modeled the variation of 10Be concentrations with depth down into the sediment in which the first (exhumed) boulder was once buried in, and down into the third (quarried) boulder. According to our modeling, we determined that the exhumed ‘Findling' was buried in sediment at a depth of around 0.5m, and around 2m of rock was quarried from the third ‘Findling'. Our results reveal the importance of sampling for surface-exposure dating within a well defined field context, as post-depositional impacts can easily hinder exposure-dating of surface

    Tool Wear Segmentation in Blanking Processes with Fully Convolutional Networks based Digital Image Processing

    Full text link
    The extend of tool wear significantly affects blanking processes and has a decisive impact on product quality and productivity. For this reason, numerous scientists have addressed their research to wear monitoring systems in order to identify or even predict critical wear at an early stage. Existing approaches are mainly based on indirect monitoring using time series, which are used to detect critical wear states via thresholds or machine learning models. Nevertheless, differentiation between types of wear phenomena affecting the tool during blanking as well as quantification of worn surfaces is still limited in practice. While time series data provides partial insights into wear occurrence and evolution, direct monitoring techniques utilizing image data offer a more comprehensive perspective and increased robustness when dealing with varying process parameters. However, acquiring and processing this data in real-time is challenging. In particular, high dynamics combined with increasing strokes rates as well as the high dimensionality of image data have so far prevented the development of direct image-based monitoring systems. For this reason, this paper demonstrates how high-resolution images of tools at 600 spm can be captured and subsequently processed using semantic segmentation deep learning algorithms, more precisely Fully Convolutional Networks (FCN). 125,000 images of the tool are taken from successive strokes, and microscope images are captured to investigate the worn surfaces. Based on findings from the microscope images, selected images are labeled pixel by pixel according to their wear condition and used to train a FCN (U-Net)

    Effect of thyroid shielding during mammography : measurements on phantom and patient as well as estimation with Monte Carlo simulation

    Get PDF
    Background: During mammography, the thyroid is exposed to scattered radiation from breast tissue and device. This may increase the risk of radiation induced thyroid cancer. Methods: We investigated the scatter radiation exposition of the thyroid and the effect of a tailored thyroid protection in phantom and patient as well as by using Monte Carlo simulation (MCS). The protective effect of a modified thyroid protection, the relevance of the protective effect and acceptance by patients have been investigated. Results: Phantom and patient measurements provided higher values for the surface dose at thyroid position than expected from MCS (phantom 0.32 mGy; patients 0.38 mGy; MCS 0.16 mGy). Phantom measurements indicated scatter contributions from both breast tissue and collimator/tube system. The value found in our patient study is within the range of the literature (0.22-0.39 mGy). The thyroid protection significantly reduced the surface dose but the dose (0.016 mGy) was higher than that expected from the lead equivalent value. However, the impact of the collar to the effective dose was small (< 4%). The collar was not visible on mammograms. Conclusions: Scatter from the collimator/tube system contributed with 50% to the thyroid dose. Due to the relative small fraction of dose deposited in the thyroid when compared to the mean glandular dose to the breast, a collar is not mandatory in general. Not being associated with the risk of obscuring parts of mammograms, such a collar may be used for young women considering their higher radio sensitivity

    Surface exposure ages imply multiple low-amplitude Pleistocene variations in East Antarctic Ice Sheet, Ricker Hills, Victoria Land

    Get PDF
    One of the major issues in (palaeo-) climatology is the response of Antarctic ice sheets to global climate changes. Antarctic ice volume has varied in the past but the extent and timing of these fluctuations are not well known. In this study, we address the question of amplitude and timing of past Antarctic ice level changes by surface exposure dating using in situ produced cosmogenic nuclides (10Be and 21Ne). The study area lies in the Ricker Hills, a nunatak at the boundary of the East Antarctic Ice Sheet in southern Victoria Land. By determining exposure ages of erratic boulders from glacial drifts we directly date East Antarctic Ice Sheet variations. Erosion-corrected neon and beryllium exposure ages indicate that a major ice advance reaching elevations of about 500m above present ice levels occurred between 1.125 and 1.375 million years before present. Subsequent ice fluctuations were of lesser extent but timing is difficult as all erratic boulders from related deposits show complex exposure histories. Sample-specific erosion rates were on the order of 20-45cmMa-1 for a quartzite and 10-65cmMa-1 for a sandstone boulder and imply that the modern cold, arid climate has persisted since at least the early Pleistocen

    Design Guidelines for interlocked stator cores made of CoFe sheets

    Get PDF
    CoFe lamination stacks used for high-performance electric motors can be manufactured economically in high volumes by interlocking. In order to ensure sufficient joint strength with minimized sheet thickness, a comprehensive knowledge of the influences of various process parameters, such as embossing depth, clearance and counter punch force, is essential. To analyze these parameters, which also influence the magnetic properties, experiments are carried out and resulting joint strengths are determined in top tensile tests. The negative influences of the cutting process on magnetic conductivity and thus hysteresis losses due to residual stresses and plastic deformation are well known. In the subsequent stacking step, an influence of embossing and pre-stresses on the material properties is expected. In addition, local electrical contacts between the sheets may occur due to the interlocking process, causing additional eddy currents. Loss measurements are conducted to investigate the effect of the joining process on the magnetic properties of the stack. In doing so, the influence of process parameters such as the embossing depth and clearance on eddy current power losses is analyzed

    Quaternary uplift rates of the Central Anatolian Plateau, Turkey: insights from cosmogenic isochron-burial nuclide dating of the Kızılırmak River terraces

    Get PDF
    The Central Anatolian Plateau (CAP) in Turkey is a relatively small plateau (300 × 400 km) with moderate average elevations of ∼1 km situated between the Pontide and Tauride orogenic mountain belts. Kızılırmak, which is the longest river (1355 km) within the borders of Turkey, flows within the CAP and slowly incises into lacustrine and volcaniclastic units before finally reaching the Black Sea. We dated the Cappadocia section of the Kızılırmak terraces in the CAP by using cosmogenic burial and isochron-burial dating methods with 10Be and 26Al as their absolute dating can provide insight into long-term incision rates, uplift and climatic changes. Terraces at 13, 20, 75 and 100 m above the current river indicate an average incision rate of 0.051 ± 0.01 mm/yr (51 ± 1 m/Ma) since ∼1.9 Ma. Using the base of a basalt fill above the modern course of the Kızılırmak, we also calculated 0.05–0.06 mm/yr mean incision and hence rock uplift rate for the last 2 Ma. Although this rate might be underestimated due to normal faulting along the valley sides, it perfectly matches our results obtained from the Kızılırmak terraces. Although up to 5–10 times slower, the Quaternary uplift of the CAP is closely related to the uplift of the northern and southern plateau margins respectively

    Timing of retreat of the Reuss Glacier (Switzerland) at the end of the Last Glacial Maximum

    Get PDF
    We used cosmogenic 10Be and 36Cl to establish the timing of the onset of deglaciation after the Last Glacial Maximum of the Reuss Glacier, one of the piedmont lobes of the Alpine ice cap that reached the northern Alpine foreland in Switzerland. In this study, we sampled erratic boulders both at the frontal position in the foreland (Lenzburg and Wohlen, canton Aargau) and at the lateral Alpine border position (Seeboden moraine, Rigi, canton Schwyz). The minimum age for the beginning of retreat is 22.2±1.0ka at the frontal (terminal) position and 20.4±1.0ka at the lateral position. These ages are directly comparable with exposure ages from the other piedmont lobes in the northern Alpine foreland. Our data from the mountain called Rigi, do not support the hypothesis that boulders located external to the Seeboden moraine were deposited prior to the last glacial cycle. We present a first exposure age from an erratic boulder in a retreat position in the Alpine foreland. The Reuss Glacier was approximately 12km behind the maximal extent no later than at 18.6±0.9ka

    The first major incision of the Swiss Deckenschotter landscape

    Get PDF
    The Swiss Deckenschotter ("cover gravels”) is the oldest Quaternary units in the northern Swiss Alpine Foreland. They are a succession of glaciofluvial gravel layers intercalated with glacial and/or overbank deposits. This lithostratigraphic sequence is called Deckenschotter because it "covers” Molasse or Mesozoic bedrock and forms mesa-type hill-tops. Deckenschotter occurs both within and beyond the extent of the Last Glacial Maximum glaciers. The Swiss Deckenschotter consist of two sub-units: Höhere (Higher) and Tiefere (Lower) Deckenschotter. Although the Höhere Deckenschotter sub-unit (HDS) is topographically higher than the Tiefere Deckenschotter, it is older. The only available age for the Swiss Deckenschotter is 2.5-1.8Ma based on mammal remains found in HDS at the Irchel site. In this study, we present an exposure age for the topographically lowest HDS, calculated from a cosmogenic 10Be depth-profile. Our results show that the first phase of the Deckenschotter glaciations in the Swiss Alps terminated at least 1,020 120+80_{ - 120}^{ + 80} - 120 + 80 ka ago, which is indicated by a significant fluvial incision. This line of evidence seems to be close to synchronous with the beginning of the Mid-Pleistocene Revolution, when the frequency of the glacial-interglacial cyclicity changed from 41 to 100ka and the amplitude from low to high, between marine isotope stages 23 and 22

    Phase-contrast enhanced mammography: A new diagnostic tool for breast imaging

    Full text link
    Phase contrast and scattering-based X-ray imaging can potentially revolutionize the radiological approach to breast imaging by providing additional and complementary information to conventional, absorption-based methods. We investigated native, non-fixed whole breast samples using a grating interferometer with an X-ray tube-based configuration. Our approach simultaneously recorded absorption, differential phase contrast and small-angle scattering signals. The results show that this novel technique - combined with a dedicated image fusion algorithm - has the potential to deliver enhanced breast imaging with complementary information for an improved diagnostic process

    Differential contributions of specimen types, culturing, and 16S rRNA sequencing in diagnosis of prosthetic joint infections

    Get PDF
    ABSTRACT Prosthetic joint failure is mainly caused by infection, aseptic failure (AF), and mechanical problems. Infection detection has been improved with modified culture methods and molecular diagnostics. However, comparisons between modified and conventional microbiology methods are difficult due to variations in specimen sampling. In this prospective, multidisciplinary study of hip or knee prosthetic failures, we assessed the contributions of different specimen types, extended culture incubations, and 16S rRNA sequencing for diagnosing prosthetic joint infections (PJI). Project specimens included joint fluid (JF), bone biopsy specimens (BB), soft-tissue biopsy specimens (STB), and swabs (SW) from the prosthesis, collected in situ , and sonication fluid collected from prosthetic components (PC). Specimens were cultured for 6 (conventional) or 14 days, and 16S rRNA sequencing was performed at study completion. Of the 156 patients enrolled, 111 underwent 114 surgical revisions (cases) due to indications of either PJI ( n = 43) or AF ( n = 71). Conventional tissue biopsy cultures confirmed PJI in 28/43 (65%) cases and refuted AF in 3/71 (4%) cases; one case was not evaluable. Based on these results, minor diagnostic adjustments were made. Fourteen-day cultures of JF, STB, and PC specimens confirmed PJI in 39/42 (93%) cases, and 16S rRNA sequencing confirmed PJI in 33/42 (83%) cases. One PJI case was confirmed with 16S rRNA sequencing alone and five with cultures of project specimens alone. These findings indicated that JF, STB, and PC specimen cultures qualified as an optimal diagnostic set. The contribution of sequencing to diagnosis of PJI may depend on patient selection; this hypothesis requires further investigation. </jats:p
    corecore