70 research outputs found

    Risk factors for bleeding complications in patients undergoing transcatheter aortic valve implantation (TAVI)

    Get PDF
    Background: The risk of bleedings in transcatheter aortic valve implantation (TAVI) patientsincreases due to age and concomitant diseases. The aim of the study was to assess the risk ofbleedings, their influence on early prognosis of TAVI patients and utility of the TIMI andGUSTO scales in the evaluation of bleeding and in prediction of blood transfusion.Methods: This was a single center study of in-hospital bleedings in 56 consecutive TAVIpatients. Bleedings were classified according to the GUSTO and TIMI scales. HASBLED‘sscale risk factors, diabetes mellitus, female sex, the route of bioprosthesis implantation and inhospitalantithrombotic treatment were analyzed. Statistical analysis consisted of c2, Fisher’sexact, Wilcoxon tests and logistic regression analysis.Results: Serious bleedings occurred in 35 (62.5%) patients. There was no significantcorrelation with HASBLED score. History of anemia was a significant predictor of bleeding inGUSTO (p = 0.0013) and TIMI (p = 0.048) scales. No bleedings in patients receivingvitamin K antagonists (VKA) pre- and VKA plus clopidogrel post intervention were observed.Patients with bleedings according to the GUSTO scale more often required blood tranfusionthan in TIMI scale (p = 0.03).Conclusions: History of anemia is the strongest predictor of serious bleedings. VKA beforeand VKA with clopidogrel after TAVI are safer than dual antiplatelet or triple therapy. TheTIMI and GUSTO scales can adequately classify bleeding after TAVI, however the GUSTObetter predicts transfusions

    Representation of the Fibonacci and Lucas Numbers in Terms of Floor and Ceiling

    Get PDF
    In the paper we show how to express the Fibonacci numbers and Lucas numbers using the floor and ceiling operations.Institute of Mathematics, University of Białystok, Akademicka 2, 15-267 Białystok, PolandGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Piotr Rudnicki. Two programs for SCM. Part I - preliminaries. Formalized Mathematics, 4(1):69-72, 1993.Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.Robert M. Solovay. Fibonacci numbers. Formalized Mathematics, 10(2):81-83, 2002.Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Piotr Wojtecki and Adam Grabowski. Lucas numbers and generalized Fibonacci numbers. Formalized Mathematics, 12(3):329-333, 2004

    Morphology for Image Processing. Part I

    Get PDF
    In this article we defined mathematical morphology image processing with set operations. First, we defined Minkowski set operations and proved their properties. Next, we defined basic image processing, dilation and erosion proving basic fact about them [5], [8].Yamazaki Hiroshi - Shinshu University, Nagano, JapanByliński Czesław - University of Białystok, PolandWasaki Katsumi - Shinshu University, Nagano, JapanCzesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Yuzhong Ding and Xiquan Liang. Preliminaries to mathematical morphology and its properties. Formalized Mathematics, 13(2):221-225, 2005.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.H. J. A. M. Heijimans. Morphological Image Operators. Academic Press, 1994.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.P. Soille. Morphological Image Analysis: Principles and Applications. Springer, 2003.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990

    Vector Functions and their Differentiation Formulas in 3-dimensional Euclidean Spaces

    Get PDF
    In this article, we first extend several basic theorems of the operation of vector in 3-dimensional Euclidean spaces. Then three unit vectors: e1, e2, e3 and the definition of vector function in the same spaces are introduced. By dint of unit vector the main operation properties as well as the differentiation formulas of vector function are shown [12].Liang Xiquan - Qingdao University of Science and Technology, ChinaZhao Piqing - Qingdao University of Science and Technology, ChinaBai Ou - University of Science and Technology of China, Hefei, ChinaGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.Murray R. Spiegel. Vector Analysis and an Introduction to Tensor Analysis. McGraw-Hill Book Company, New York, 1959.Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990

    Some Operations on Quaternion Numbers

    Get PDF
    In this article, we give some equality and basic theorems about quaternion numbers, and some special operations.Li Bo - Qingdao University of Science and Technology, ChinaLiang Xiquan - Qingdao University of Science and Technology, ChinaWang Pan - Qingdao University of Science and Technology, ChinaZhuang Yanping - Qingdao University of Science and Technology, ChinaGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Fuguo Ge. Inner products, group, ring of quaternion numbers. Formalized Mathematics, 16(2):135-139, 2008, doi:10.2478/v10037-008-0019-x.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Xiquan Liang and Fuguo Ge. The quaternion numbers. Formalized Mathematics, 14(4):161-169, 2006, doi:10.2478/v10037-006-0020-1.Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    The Geometric Interior in Real Linear Spaces

    Get PDF
    We introduce the notions of the geometric interior and the centre of mass for subsets of real linear spaces. We prove a number of theorems concerning these notions which are used in the theory of abstract simplicial complexes.Institute of Informatics, University of Białystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Karol Pąk. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    Comparison of mid-term results of transcatheter aortic valve implantation in high-risk patients with logistic EuroSCORE ≥ 20% or < 20%

    Get PDF
    Wstęp: Przezcewnikowa implantacja zastawki aortalnej (TAVI) jest ustaloną metodą leczenia wybranych chorych ze zwężeniem zastawki aortalnej. Według wspólnego stanowiska ekspertów, Europejskiego Towarzystwa Torakochirurgów i Kardiochirurgów, Europejskiego Towarzystwa Kardiologicznego i Asocjacji Interwencji Sercowo-Naczyniowych, opublikowanego w 2008 r. TAVI powinno się wykonywać u chorych z grupy wysokiego ryzyka chirurgicznego z logistic EuroSCORE (log ES) ≥ 20%. Istnieje natomiast niewiele doniesień na temat TAVI u pacjentów z grupy wysokiego ryzyka chirurgicznego, ale z log ES &lt; 20%. Cel: Celem pracy było porównanie wyników TAVI u chorych z log ES ≥ 20% z rezultatami uzyskanymi u pacjentów z log ES &lt; 20%, którzy ze względu na inne choroby współtowarzyszące zostali ostatecznie zdyskwalifikowani z leczenia operacyjnego. Metody i wyniki: W okresie od stycznia 2009 do grudnia 2011 r. TAVI wykonano u 93 chorych, którzy zastali podzieleni na dwie grupy. Grupę 1 stanowiło 59 (63.4%) pacjentów z log ES ≥ 20%, a grupę 2 — 34 (36,6%) osób z log ES &lt; 20%. Średnia wartość Log ES wynosiła 30,9 ± 9,7% w grupie 1 oraz 12,7 ± 4,9% w grupie 2 (p &lt; 0,001). Chorzy z grupy 1 byli starsi (82,9 ± 5,9 vs. 78,7 ± 7,8 roku; p = 0,01), charakteryzowali się niższą frakcją wyrzutową lewej komory (51,5 ± 14% vs. 60,4 ± 9,6%; p = 0,002), wyższym ciśnieniem skurczowym w tętnicy płucnej (56 ± 11 vs. 49 ± 10,6 mm Hg; p = 0,02) oraz gorszą funkcją nerek (GFR 51,3 ± 18,4 vs. 60,6 ± 16,6 ml/min/m2; p = 0,02). Przeżycie po roku i po 2 latach było porównywalne i wynosiło 76,6% i 69,0% oraz 89,0% i 83,6% odpowiednio w grupie 1 i 2 (p = NS), natomiast częstość wy­stępowania zgonów sercowych po roku i po 2 latach była istotnie wyższa w grupie 1 (21,4% i 28,6%) niż w grupie 2 (8,1% i 10,8%) (p = 0,02). Wnioski: Wyniki niniejszej pracy pokazują, że częstość występowania zgonów sercowych w okresie 2-letniej obserwacji po TAVI jest wyższa u chorych z grupy wysokiego ryzyka chirurgicznego z log ES ≥ 20% niż u pacjentów zdyskwalifikowanych z leczenia chirurgicznego przez Zespół Sercowy, ale z log ES &lt; 20%.Background: Transcatheter aortic valve implantation (TAVI) is an established treatment method in selected high-risk patients with severe aortic stenosis. However, data on which patients gain most benefit from this procedure is still limited. According to the European consensus document, TAVI is recommended for high-risk patients with logistic EuroSCORE (log ES) ≥ 20%. To date, little is known about TAVI outcomes in patients with log ES &lt; 20%. Aim: To evaluate outcomes of TAVI in high-risk patients with log ES ≥ 20% in comparison with high-risk patients with log ES &lt; 20%. Methods and results: Of 93 patients who underwent TAVI at our institution between January 2009 and December 2011, we identified 59 (63.4%) patients with log ES ≥ 20% (Group 1) and 34 (36.6%) patients with log ES &lt; 20% (Group 2). The mean log ES was 30.9 ± 9.7% in Group 1 and 12.7 ± 4.9% in Group 2 (p &lt; 0.01). Significant differences were found between the two groups in regard to age (82.9 ± 5.9 vs. 78.7 ± 7.8 years, p = 0.001), left ventricular ejection fraction (51.5 ± 14% vs. 60.4 ± 9.6%, p = 0.002), pulmonary artery systolic pressure (56 ± 11 vs. 49 ± 10.6 mm Hg, p = 0.02), and glomerular filtration rate (51.3 ± 18.4 vs. 60.6 ± 16.6 mL/min/m2, p = 0.02). Survival rates at 1 and 2 years were 76.6% and 69.0% in Group 1 and 89.0% and 83.6% in Group 2 (p = NS). However, cardiovascular mortality at 1 and 2 years was higher in Group 1 compared to Group 2 (21.4% and 28.6% vs. 8.1% and 10.8% in Groups 1 and 2, respectively). Conclusions: The results of this study demonstrate that at 2 years of follow-up, TAVI in high-risk patients with log ES ≥ 20% was associated with a higher cardiovascular mortality compared to high-risk patients with log ES &lt; 20%

    The Perfect Number Theorem and Wilson's Theorem

    Get PDF
    This article formalizes proofs of some elementary theorems of number theory (see [1, 26]): Wilson's theorem (that n is prime iff n > 1 and (n - 1)! ≅ -1 (mod n)), that all primes (1 mod 4) equal the sum of two squares, and two basic theorems of Euclid and Euler about perfect numbers. The article also formally defines Euler's sum of divisors function Φ, proves that Φ is multiplicative and that Σ k|n Φ(k) = n.Casella Postale 49, 54038 Montignoso, ItalyM. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer-Verlag, Berlin Heidelberg New York, 2004.Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Yoshinori Fujisawa and Yasushi Fuwa. The Euler's function. Formalized Mathematics, 6(4):549-551, 1997.Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328, 1990.Magdalena Jastrzebska and Adam Grabowski. On the properties of the Möbius function. Formalized Mathematics, 14(1):29-36, 2006, doi:10.2478/v10037-006-0005-0.Artur Korniłowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179-186, 2004.Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.Rafał Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.W. J. LeVeque. Fundamentals of Number Theory. Dover Publication, New York, 1996.Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Piotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics, 12(1):49-58, 2004.Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Hiroshi Yamazaki, Yasunari Shidama, and Yatsuka Nakamura. Bessel's inequality. Formalized Mathematics, 11(2):169-173, 2003

    Formalization of Integral Linear Space

    Get PDF
    In this article, we formalize integral linear spaces, that is a linear space with integer coefficients. Integral linear spaces are necessary for lattice problems, LLL (Lenstra-Lenstra-Lovász) base reduction algorithm that outputs short lattice base and cryptographic systems with lattice [8].Futa Yuichi - Shinshu University, Nagano, JapanOkazaki Hiroyuki - Shinshu University, Nagano, JapanShidama Yasunari - Shinshu University, Nagano, JapanGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective (the international series in engineering and computer science). 2002.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992

    Brouwer Fixed Point Theorem in the General Case

    Get PDF
    In this article we prove the Brouwer fixed point theorem for an arbitrary convex compact subset of εn with a non empty interior. This article is based on [15].Institute of Informatics, University of Białystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Agata Darmochwał. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.Artur Korniłowicz and Yasunari Shidama. Intersections of intervals and balls in En/T. Formalized Mathematics, 12(3):301-306, 2004.Artur Korniłowicz and Yasunari Shidama. Brouwer fixed point theorem for disks on the plane. Formalized Mathematics, 13(2):333-336, 2005.Yatsuka Nakamura, Andrzej Trybulec, and Czesław Byliński. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol Sieklucki. Geometria i topologia. PWN, 1979.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990
    corecore