90 research outputs found
Odefy -- From discrete to continuous models
<p>Abstract</p> <p>Background</p> <p>Phenomenological information about regulatory interactions is frequently available and can be readily converted to Boolean models. Fully quantitative models, on the other hand, provide detailed insights into the precise dynamics of the underlying system. In order to connect discrete and continuous modeling approaches, methods for the conversion of Boolean systems into systems of ordinary differential equations have been developed recently. As biological interaction networks have steadily grown in size and complexity, a fully automated framework for the conversion process is desirable.</p> <p>Results</p> <p>We present <it>Odefy</it>, a MATLAB- and Octave-compatible toolbox for the automated transformation of Boolean models into systems of ordinary differential equations. Models can be created from sets of Boolean equations or graph representations of Boolean networks. Alternatively, the user can import Boolean models from the CellNetAnalyzer toolbox, GINSim and the PBN toolbox. The Boolean models are transformed to systems of ordinary differential equations by multivariate polynomial interpolation and optional application of sigmoidal Hill functions. Our toolbox contains basic simulation and visualization functionalities for both, the Boolean as well as the continuous models. For further analyses, models can be exported to SQUAD, GNA, MATLAB script files, the SB toolbox, SBML and R script files. Odefy contains a user-friendly graphical user interface for convenient access to the simulation and exporting functionalities. We illustrate the validity of our transformation approach as well as the usage and benefit of the Odefy toolbox for two biological systems: a mutual inhibitory switch known from stem cell differentiation and a regulatory network giving rise to a specific spatial expression pattern at the mid-hindbrain boundary.</p> <p>Conclusions</p> <p>Odefy provides an easy-to-use toolbox for the automatic conversion of Boolean models to systems of ordinary differential equations. It can be efficiently connected to a variety of input and output formats for further analysis and investigations. The toolbox is open-source and can be downloaded at <url>http://cmb.helmholtz-muenchen.de/odefy</url>.</p
Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects
<p>Abstract</p> <p>Background</p> <p>MicroRNA-mediated control of gene expression via translational inhibition has substantial impact on cellular regulatory mechanisms. About 37% of mammalian microRNAs appear to be located within introns of protein coding genes, linking their expression to the promoter-driven regulation of the host gene. In our study we investigate this linkage towards a relationship beyond transcriptional co-regulation.</p> <p>Results</p> <p>Using measures based on both annotation and experimental data, we show that intronic microRNAs tend to support their host genes by regulation of target gene expression with significantly correlated expression patterns. We used expression data of three differentiating cell types and compared gene expression profiles of host and target genes. Many microRNA target genes show expression patterns significantly correlated with the expressions of the microRNA host genes. By calculating functional similarities between host and predicted microRNA target genes based on GO annotations, we confirm that many microRNAs link host and target gene activity in an either synergistic or antagonistic manner.</p> <p>Conclusions</p> <p>These two regulatory effects may result from fine tuning of target gene expression functionally related to the host or knock-down of remaining opponent target gene expression. This finding allows to extend the common practice of mapping large scale gene expression data to protein associated genes with functionality of co-expressed intronic microRNAs.</p
Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers
Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level. Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic signatures with complex diseases such as Alzheimer's disease and cardiovascular and metabolic disorders has been shown. There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than 3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant concentration differences between males and females for 102 out of 131 metabolites (p-values<3.8 x 10(-4); Bonferroni-corrected threshold). Sex-specific genome-wide association studies (GWAS) showed genome-wide significant differences in beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p<3.8 x 10(-10); Bonferroni-corrected threshold) for glycine. We showed that the metabolite profiles of males and females are significantly different and, furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider sex-specific effects in design and interpretation
Discovery of Sexual Dimorphisms in Metabolic and Genetic Biomarkers
Metabolomic profiling and the integration of whole-genome genetic association data has proven to be a powerful tool to comprehensively explore gene regulatory networks and to investigate the effects of genetic variation at the molecular level. Serum metabolite concentrations allow a direct readout of biological processes, and association of specific metabolomic signatures with complex diseases such as Alzheimer's disease and cardiovascular and metabolic disorders has been shown. There are well-known correlations between sex and the incidence, prevalence, age of onset, symptoms, and severity of a disease, as well as the reaction to drugs. However, most of the studies published so far did not consider the role of sexual dimorphism and did not analyse their data stratified by gender. This study investigated sex-specific differences of serum metabolite concentrations and their underlying genetic determination. For discovery and replication we used more than 3,300 independent individuals from KORA F3 and F4 with metabolite measurements of 131 metabolites, including amino acids, phosphatidylcholines, sphingomyelins, acylcarnitines, and C6-sugars. A linear regression approach revealed significant concentration differences between males and females for 102 out of 131 metabolites (p-values<3.8 x 10(-4); Bonferroni-corrected threshold). Sex-specific genome-wide association studies (GWAS) showed genome-wide significant differences in beta-estimates for SNPs in the CPS1 locus (carbamoyl-phosphate synthase 1, significance level: p<3.8 x 10(-10); Bonferroni-corrected threshold) for glycine. We showed that the metabolite profiles of males and females are significantly different and, furthermore, that specific genetic variants in metabolism-related genes depict sexual dimorphism. Our study provides new important insights into sex-specific differences of cell regulatory processes and underscores that studies should consider sex-specific effects in design and interpretation
Characterization of missing values in untargeted MS-based metabolomics data and evaluation of missing data handling strategies.
BACKGROUND: Untargeted mass spectrometry (MS)-based metabolomics data often contain missing values that reduce statistical power and can introduce bias in biomedical studies. However, a systematic assessment of the various sources of missing values and strategies to handle these data has received little attention. Missing data can occur systematically, e.g. from run day-dependent effects due to limits of detection (LOD); or it can be random as, for instance, a consequence of sample preparation. METHODS: We investigated patterns of missing data in an MS-based metabolomics experiment of serum samples from the German KORA F4 cohort (n = 1750). We then evaluated 31 imputation methods in a simulation framework and biologically validated the results by applying all imputation approaches to real metabolomics data. We examined the ability of each method to reconstruct biochemical pathways from data-driven correlation networks, and the ability of the method to increase statistical power while preserving the strength of established metabolic quantitative trait loci. RESULTS: Run day-dependent LOD-based missing data accounts for most missing values in the metabolomics dataset. Although multiple imputation by chained equations performed well in many scenarios, it is computationally and statistically challenging. K-nearest neighbors (KNN) imputation on observations with variable pre-selection showed robust performance across all evaluation schemes and is computationally more tractable. CONCLUSION: Missing data in untargeted MS-based metabolomics data occur for various reasons. Based on our results, we recommend that KNN-based imputation is performed on observations with variable pre-selection since it showed robust results in all evaluation schemes.This work was supported by grants from the German Federal Ministry of Education and Research (BMBF), by BMBF Grant No. 01ZX1313C (project e:Athero-MED) and Grant No. 03IS2061B (project Gani_Med). Moreover, the research leading to these results has received funding from the European Union’s Seventh Framework Programme [FP7-Health-F5-2012] under grant agreement No. 305280 (MIMOmics) and from the European Research Council (starting grant “LatentCauses”). KS is supported by Biomedical Research Program funds at Weill Cornell Medical College in Qatar, a program funded by the Qatar Foundation. The KORA Augsburg studies were financed by the Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany and supported by grants from the German Federal Ministry of Education and Research (BMBF). Analyses in the EPIC-Norfolk study were supported by funding from the Medical Research Council (MC_PC_13048 and MC_UU_12015/1)
Eating less or more – Mindset induced changes in neural correlates of pre-meal planning
Obesity develops due to an imbalance between energy intake and expenditure. Besides the decision about what to eat, daily energy intake might be even more dependent on the decision about the portion size to be consumed. For decisions between different foods, attentional focus is considered to play a key role in the choice selection. In the current study, we investigated the attentional modulation of portion size selection during pre-meal planning. We designed a functional magnetic resonance task in which healthy participants were directed to adopt different mindsets while selecting their portion size for lunch. Compared with a free choice condition, participants reduced their portion sizes when considering eating for health or pleasure, which was accompanied by increased activity in left prefrontal cortex and left orbitofrontal cortex, respectively. When planning to be full until dinner, participants selected larger portion sizes and showed a trend for increased activity in left insula. These results provide first evidence that also the cognitive process of pre-meal planning is influenced by the attentional focus at the time of choice, which could provide an opportunity for influencing the control of meal size selection by mindset manipulation
Metabolite profiling reveals new insights into the regulation of serum urate in humans
Albrecht E, Waldenberger M, Krumsiek J, et al. Metabolite profiling reveals new insights into the regulation of serum urate in humans. Metabolomics. 2013;10(1):141-151.Serum urate, the final breakdown product of purine metabolism, is causally involved in the pathogenesis of gout, and implicated in cardiovascular disease and type 2 diabetes. Serum urate levels highly differ between men and women; however the underlying biological processes in its regulation are still not completely understood and are assumed to result from a complex interplay between genetic, environmental and lifestyle factors. In order to describe the metabolic vicinity of serum urate, we analyzed 355 metabolites in 1,764 individuals of the population-based KORA F4 study and constructed a metabolite network around serum urate using Gaussian Graphical Modeling in a hypothesis-free approach. We subsequently investigated the effect of sex and urate lowering medication on all 38 metabolites assigned to the network. Within the resulting network three main clusters could be detected around urate, including the well-known pathway of purine metabolism, as well as several dipeptides, a group of essential amino acids, and a group of steroids. Of the 38 assigned metabolites, 25 showed strong differences between sexes. Association with uricostatic medication intake was not only confined to purine metabolism but seen for seven metabolites within the network. Our findings highlight pathways that are important in the regulation of serum urate and suggest that dipeptides, amino acids, and steroid hormones are playing a role in its regulation. The findings might have an impact on the development of specific targets in the treatment and prevention of hyperuricemia
Body Fat Free Mass Is Associated with the Serum Metabolite Profile in a Population-Based Study
To characterise the influence of the fat free mass on the metabolite profile in serum samples from participants of the population-based KORA (Cooperative Health Research in the Region of Augsburg) S4 study. Analyses were based on metabolite profile from 965 participants of the S4 and 890 weight-stable subjects of its seven-year follow-up study (KORA F4). 190 different serum metabolites were quantified in a targeted approach including amino acids, acylcarnitines, phosphatidylcholines (PCs), sphingomyelins and hexose. Associations between metabolite concentrations and the fat free mass index (FFMI) were analysed using adjusted linear regression models. To draw conclusions on enzymatic reactions, intra-metabolite class ratios were explored. Pairwise relationships among metabolites were investigated and illustrated by means of Gaussian graphical models (GGMs). We found 339 significant associations between FFMI and various metabolites in KORA S4. Among the most prominent associations (p-values 4.75 × 10(-16)-8.95 × 10(-06)) with higher FFMI were increasing concentrations of the branched chained amino acids (BCAAs), ratios of BCAAs to glucogenic amino acids, and carnitine concentrations. For various PCs, a decrease in chain length or in saturation of the fatty acid moieties could be observed with increasing FFMI, as well as an overall shift from acyl-alkyl PCs to diacyl PCs. These findings were reproduced in KORA F4. The established GGMs supported the regression results and provided a comprehensive picture of the relationships between metabolites. In a sub-analysis, most of the discovered associations did not exist in obese subjects in contrast to non-obese subjects, possibly indicating derangements in skeletal muscle metabolism. A set of serum metabolites strongly associated with FFMI was identified and a network explaining the relationships among metabolites was established. These results offer a novel and more complete picture of the FFMI effects on serum metabolites in a data-driven network
- …