2,933 research outputs found

    Mapping of lithological units, structural units and surface drainage using Skylab data

    Get PDF
    There are no author-identified significant results in this report

    Mapping of lithologic and structural units using multispectral imagery

    Get PDF
    The author has identified the following significant results. ERTS-1 MSS imagery covering the Afar-Triangle/Ethiopia and adjacent regions (Ethiopian Plateau, Somali Plateau, and parts of Yemen and Saudi Arabi) was applied to the mapping of lithologic and structural units of the test area at a scale 1:1,000,000. Results of the geological evaluation of the ERTS-1 imagery of the Afar have proven the usefullness of this type of satellite data for regional geological mapping. Evaluation of the ERTS images also resulted in new aspects of the structural setting and tectonic development of the Afar-Triangle, where three large rift systems, the oceanic rifts of the Red Sea and Gulf of Aden and the continental East African rift system, seem to meet each other. Surface structures mapped by ERTS do not indicate that the oceanic rift of the Gulf of Aden (Sheba Ridge) continues into the area of continental crust west of the Gulf of Tadjura. ERTS data show that the Wonji fault belt of the African rift system does not enter or cut through the central Afar. The Aysha-Horst is not a Horst but an autochthonous spur of the Somali Plateau

    The Cosmic Large-Scale Structure in X-rays (CLASSIX) Cluster Survey I: Probing galaxy cluster magnetic fields with line of sight rotation measures

    Full text link
    To search for a signature of an intracluster magnetic field, we compare measurements of Faraday rotation of polarised extragalactic radio sources in the line of sight of galaxy clusters with those outside. We correlated a catalogue of 1383 rotation measures (RM) of extragalactic polarised radio sources with X-ray luminous galaxy clusters from the CLASSIX survey (combining REFLEX II and NORAS II). We compared the RM in the line of sight of clusters within their projected radii of r_500 with those outside and found a significant excess of the dispersion of the RM in the cluster regions. Since the observed RM is the result of Faraday rotation in several presumably uncorrelated magnetised cells of the intracluster medium, the observations correspond to quantities averaged over several magnetic field directions and strengths. Therefore the interesting quantity is the standard deviation of the RM for an ensemble of clusters. We found a standard deviation of the RM inside r_500 of about 120 +- 21 rad m^-2. This compares to about 56 +- 8 rad m^-2 outside. We show that the most X-ray luminous and thus most massive clusters contribute most to the observed excess RM. Modelling the electron density distribution in the intracluster medium with a self-similar model, we found that the dispersion of the RM increases with the column density, and we deduce a magnetic field value of about 2 - 6 (l/10kpc)^-1/2 microG assuming a constant magnetic field strength, where l is the size of the coherently magnetised intracluster medium cells. This magnetic field energy density amounts to a few percent of the average thermal energy density in clusters. When we assumed the magnetic energy density to be a constant fraction of the thermal energy density, we deduced a slightly lower value for this fraction of 3 - 10 (l/10kpc)^-1/2 per mille.Comment: 7 pages, 6 figures, in press, Astronomy and Astrophysics, 201

    A multi-frequency study of the peculiar interacting system Arp 206

    Get PDF
    Arp 206 is a nearby, relatively large, and bright interacting system comprising unequal members: NGC 3432 and UGC 5983. A third anonymous galaxy, Arp 206c, is visible in the field. The CCD images show a well-developed bridge between NGC 3432 and UGC 5983. On the other hand, the complex H I tails are not visible in the optical. In the total H I map, the bridge is lost in a general envelope encompassing both galaxies. The bridge also appears to have some radio emission. On the Total H I map the system is rather edge-on, far more than it would appear in optical wavelengths. UGC 5983 falls exactly in line with NGC 3432. The velocity of the centers of mass of NGC 3432 and UGC 5983 are 530 km s(exp -1) and 630 km s(exp -1), respectively. In view of the considerable damage sustained by NGC 3432 and the apparent low mass of UGC 5983, it appears that the passage must have been at near parabolic speed, with a small pericentric distance and a very low inclination with rspect to the disk of NGC 3432. The apparent distribution of H I along the z axis of the galaxy could be accounted for by projection effects. The tidal appendage found at higher velocities, which rises at a P.A. approx. equal to 25 degrees west of the main body of the galaxy is probably the tail, the part of the tidal damage away from the perturbing companion. The bridge may be rising north-east from the galaxy and then continue under to the south of the galaxy. The relative sizes of the appendages would indicate that the pericenter was crossed recently. Any further inferences about the collision parameters will need to await the results of detailed computational modelling of the interaction. The authors also summarize the observational characteristics of NGC 3432, UGC 5983, and Arp 206c

    Transmission Line Analogy for Relativistic Poynting-Flux Jets

    Full text link
    Radio emission, polarization, and Faraday rotation maps of the radio jet of the galaxy 3C 303 have shown that one knot of this jet carries a {\it galactic}-scale electric current and that it is magnetically dominated. We develop the theory of magnetically dominated or Poynting-flux jets by making an analogy of a Poynting jet with a transmission line or waveguide carrying a net current and having a potential drop across it (from the jet's axis to its radius) and a definite impedance which we derive. Time-dependent but not necessarily small perturbations of a Poynting-flux jet are described by the "telegrapher's equations." These predict the propagation speed of disturbances and the effective wave impedance for forward and backward propagating wave components. A localized disturbance of a Poynting jet gives rise to localized dissipation in the jet which may explain the enhanced synchrotron radiation in the knots of the 3C 303 jet, and also in the apparently stationary knot HST-1 in the jet near the nucleus of the nearby galaxy M87. For a relativistic Poynting jet on parsec scales, the reflected voltage wave from an inductive termination or load can lead to a backward propagating wave which breaks down the magnetic insulation of the jet giving E/B1|{\bf E}| /|{\bf B}|\geq 1. At the threshold for breakdown, E/B=1|{\bf E}|/|{\bf B}|=1, positive and negative particles are directly accelerated in the E×B{\bf E \times B} direction which is approximately along the jet axis. Acceleration can occur up to Lorentz factors 107\sim 10^7. This particle acceleration mechanism is distinct from that in shock waves and that in magnetic field reconnection.Comment: 8 pages, 6 figure

    Twists of Elliptic Curves

    Get PDF
    In this note we extend the theory of twists of elliptic curves as presented in various standard texts for characteristic not equal to two or three to the remaining characteristics. For this, we make explicit use of the correspondence between the twists and the Galois cohomology set H1(GK/K,AutK(E))H^1\big(\operatorname{G}_{\overline{K}/K}, \operatorname{Aut}_{\overline{K}}(E)\big). The results are illustrated by examples

    Wave model for longitudinal dispersion: Application to the laminar-flow tubular reactor

    Get PDF
    The wave model for longitudinal dispersion, published elsewhere as an alternative to the commonly used dispersed plug-flow model, is applied to the classic case of the laminar-flow tubular reactor. The results are compared in a wide range of situations to predictions by the dispersed plug-flow model as well as to exact numerical calculations with the 2-D model of the reactor and to other available methods. In many practical cases, the solutions of the wave model agree closely with the exact data. The wave model has a much wider region of validity than the dispersed plug-flow model, has a distinct physical background, and is easier to use for reactor calculations. This provides additional support to the theory developed elsewhere. The properties and the applicability of the wave model to situations with rapidly changing concentration fields are discussed. Constraints to be satisfied are established to use the new theory with confidence for arbitrary initial and boundary conditions
    corecore