99 research outputs found

    Biological Flora of Central Europe–Lupinus polyphyllus Lindl

    Get PDF
    The invasive herb Lupinus polyphyllus has been focus of a number of fact sheets worldwide but a comprehensive summary of the species’ taxonomy and morphology, distribution, habitat requirements, and biology has been lacking. This paper gives a thorough account of the species’ systematic position and taxonomy, highlighting the difficulties to delimit taxa, which is related to interbreeding among members of this genus. However, L. polyphyllus var. polyphyllus is apparently the taxon that has naturalized and is regionally invasive in temperate-humid climates worldwide. We also present an updated distribution map of L. polyphyllus in the native and invaded ranges, which highlights seven regions in the world where the species has been established. We show that the climatic niche of L. polyphyllus in the invaded range shifts towards higher summer precipitation and lower isothermality, probably because the invaded range includes subcontinental regions of eastern Europe and western Siberia. The habitats of L. polyphyllus range from rather dry to wet, have moderately acidic to strongly acidic soils, and the species’ indicator values across Europe suggest that it occurs along a gradient from very nutrient poor sites to intermediate to rich sites from northern to southern Europe. The species shows high resistance to both drought and frost. In Central Europe, the species has a stronghold in alpic mountain hay meadows, abandoned meadows and pastures, low and medium altitude hay meadows, anthropogenic herb stands and temperate thickets and scrubs. In northern Europe, the species occurs in anthropogenic herb stands along roads and railroads as well as in abandoned pastures and fields. We also found some doubtful information about L. polyphyllus in the literature. This refers to its description as “rhizomatous perennial” although it lacks rhizomes; an apparently very high longevity of its seeds, which may only be true under artificial conditions in an ex situ seed repository; and a very deep rooting depth, which may not represent the average rooting depth but rather an extreme value. Knowledge about the interrelationships between the species’ future population dynamics and spread and ongoing climate warming is lacking. Finally, our review points out that there is currently no evidence-based strategy for a cost-efficient management of L. polyphyllus although it is among the most problematic non-native plant species in Europe due to its environmental and socio-economic impacts

    The Added Value of Large-Eddy and Storm-Resolving Models for Simulating Clouds and Precipitation

    Get PDF
    More than one hundred days were simulated over very large domains with fine (0.156 km to 2.5 km) grid spacing for realistic conditions to test the hypothesis that storm (kilometer) and large-eddy (hectometer) resolving simulations would provide an improved representation of clouds and precipitation in atmospheric simulations. At scales that resolve convective storms (storm-resolving for short), the vertical velocity variance becomes resolved and a better physical basis is achieved for representing clouds and precipitation. Similarly to past studies we found an improved representation of precipitation at kilometer scales, as compared to models with parameterized convection. The main precipitation features (location, diurnal cycle and spatial propagation) are well captured already at kilometer scales, and refining resolution to hectometer scales does not substantially change the simulations in these respects. It does, however, lead to a reduction in the precipitation on the time-scales considered – most notably over the ocean in the tropics. Changes in the distribution of precipitation, with less frequent extremes are also found in simulations incorporating hectometer scales. Hectometer scales appear to be more important for the representation of clouds, and make it possible to capture many important aspects of the cloud field, from the vertical distribution of cloud cover, to the distribution of cloud sizes, and to the diel (daily) cycle. Qualitative improvements, particularly in the ability to differentiate cumulus from stratiform clouds, are seen when one reduces the grid spacing from kilometer to hectometer scales. At the hectometer scale new challenges arise, but the similarity of observed and simulated scales, and the more direct connection between the circulation and the unconstrained degrees of freedom make these challenges less daunting. This quality, combined with already improved simulation as compared to more parameterized models, underpins our conviction that the use and further development of storm-resolving models offers exciting opportunities for advancing understanding of climate and climate change

    Abstracts from the 8th International Conference on cGMP Generators, Effectors and Therapeutic Implications

    Get PDF
    This work was supported by a restricted research grant of Bayer AG

    Measurements of top-quark pair differential cross-sections in the eμe\mu channel in pppp collisions at s=13\sqrt{s} = 13 TeV using the ATLAS detector

    Get PDF

    Search for single production of vector-like quarks decaying into Wb in pp collisions at s=8\sqrt{s} = 8 TeV with the ATLAS detector

    Get PDF

    Measurement of the charge asymmetry in top-quark pair production in the lepton-plus-jets final state in pp collision data at s=8TeV\sqrt{s}=8\,\mathrm TeV{} with the ATLAS detector

    Get PDF

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF

    Search for dark matter in association with a Higgs boson decaying to bb-quarks in pppp collisions at s=13\sqrt s=13 TeV with the ATLAS detector

    Get PDF

    ATLAS Run 1 searches for direct pair production of third-generation squarks at the Large Hadron Collider

    Get PDF
    corecore