23 research outputs found

    Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression

    Get PDF
    Trait-associated genetic variants affect complex phenotypes primarily via regulatory mechanisms on the transcriptome. To investigate the genetics of gene expression, we performed cis- and trans-expression quantitative trait locus (eQTL) analyses using blood-derived expression from 31,684 individuals through the eQTLGen Consortium. We detected cis-eQTL for 88% of genes, and these were replicable in numerous tissues. Distal trans-eQTL (detected for 37% of 10,317 trait-associated variants tested) showed lower replication rates, partially due to low replication power and confounding by cell type composition. However, replication analyses in single-cell RNA-seq data prioritized intracellular trans-eQTL. Trans-eQTL exerted their effects via several mechanisms, primarily through regulation by transcription factors. Expression of 13% of the genes correlated with polygenic scores for 1,263 phenotypes, pinpointing potential drivers for those traits. In summary, this work represents a large eQTL resource, and its results serve as a starting point for in-depth interpretation of complex phenotypes

    GWAS meta-analysis of intrahepatic cholestasis of pregnancy implicates multiple hepatic genes and regulatory elements

    Get PDF
    Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disorder affecting 0.5–2% of pregnancies. The majority of cases present in the third trimester with pruritus, elevated serum bile acids and abnormal serum liver tests. ICP is associated with an increased risk of adverse outcomes, including spontaneous preterm birth and stillbirth. Whilst rare mutations affecting hepatobiliary transporters contribute to the aetiology of ICP, the role of common genetic variation in ICP has not been systematically characterised to date. Here, we perform genome-wide association studies (GWAS) and meta-analyses for ICP across three studies including 1138 cases and 153,642 controls. Eleven loci achieve genome-wide significance and have been further investigated and fine-mapped using functional genomics approaches. Our results pinpoint common sequence variation in liver-enriched genes and liver-specific cis-regulatory elements as contributing mechanisms to ICP susceptibility

    Immune-Signatures for Lung Cancer Diagnostics: Evaluation of Protein Microarray Data Normalization Strategies

    No full text
    New minimal invasive diagnostic methods for early detection of lung cancer are urgently needed. It is known that the immune system responds to tumors with production of tumor-autoantibodies. Protein microarrays are a suitable highly multiplexed platform for identification of autoantibody signatures against tumor-associated antigens (TAA). These microarrays can be probed using 0.1 mg immunoglobulin G (IgG), purified from 10 µL of plasma. We used a microarray comprising recombinant proteins derived from 15,417 cDNA clones for the screening of 100 lung cancer samples, including 25 samples of each main histological entity of lung cancer, and 100 controls. Since this number of samples cannot be processed at once, the resulting data showed non-biological variances due to “batch effects”. Our aim was to evaluate quantile normalization, “distance-weighted discrimination” (DWD), and “ComBat” for their effectiveness in data pre-processing for elucidating diagnostic immune‑signatures. “ComBat” data adjustment outperformed the other methods and allowed us to identify classifiers for all lung cancer cases versus controls and small-cell, squamous cell, large-cell, and adenocarcinoma of the lung with an accuracy of 85%, 94%, 96%, 92%, and 83% (sensitivity of 0.85, 0.92, 0.96, 0.88, 0.83; specificity of 0.85, 0.96, 0.96, 0.96, 0.83), respectively. These promising data would be the basis for further validation using targeted autoantibody tests

    A genome-wide association study of blood cell morphology identifies cellular proteins implicated in disease aetiology

    No full text
    Abstract Blood cells contain functionally important intracellular structures, such as granules, critical to immunity and thrombosis. Quantitative variation in these structures has not been subjected previously to large-scale genetic analysis. We perform genome-wide association studies of 63 flow-cytometry derived cellular phenotypes—including cell-type specific measures of granularity, nucleic acid content and reactivity—in 41,515 participants in the INTERVAL study. We identify 2172 distinct variant-trait associations, including associations near genes coding for proteins in organelles implicated in inflammatory and thrombotic diseases. By integrating with epigenetic data we show that many intracellular structures are likely to be determined in immature precursor cells. By integrating with proteomic data we identify the transcription factor FOG2 as an early regulator of platelet formation and α-granularity. Finally, we show that colocalisation of our associations with disease risk signals can suggest aetiological cell-types—variants in IL2RA and ITGA4 respectively mirror the known effects of daclizumab in multiple sclerosis and vedolizumab in inflammatory bowel disease
    corecore