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Abstract

To understand complex genetic diseases it is necessary to study DNA, its transcription,
translation and regulation thereof. In a mechanistic view diseases can be caused by alterations
in the DNA sequence or by dysregulation of gene expression. To understand cell regulation,
first connections have to be found between elements contributing to gene expression and its
regulation.

During my PhD I have studied the regulatory effects of human genetic variation. To
do so I have processed and analysed datasets measuring effects of genetic variants on
transcript levels of genes, identified regulatory variants and put them in bigger biochemical
and physiological context.

Expression quantitative trait locus (eQTL) studies identify genetically explainable gene
expression variation in a tissue and potentially cell type specific manner. I have reprocessed
and aggregated eQTL datasets of seven purified blood cell types that were generated by
collaborators in different laboratories. I showed that the increased sample size enables the
identification of additional associations, also with low-frequency variants, and I compared
my cell type specific eQTL results to results from an eQTL study performed on whole blood
without cell type purification.

Gene regulation is complex and relies on several layers of control, and only one of them
is genetic background. To help understand genetic control, I compared my eQTL results
across the seven cell types and highlighted cell type specific associations.

I put my eQTL results into bigger context, overlapping them with genomic regions, which
are known to be important for gene regulation. Apart from the direct interpretation, eQTL
results have been used as a tool to help improve the understanding of results from genome-
wide association studies (GWAS) by means of colocalisation. I performed a colocalisation
analysis and as an example I could show how a GWAS variant mechanistically exerts its
effect on plateletcrit - a blood cell index studied in a recent GWAS (Astle et al., 2016).
Finally, I drew a link between gene-regulation, three-dimensional chromatin structure and
gene constraint against coding loss of function mutations.

Complementing association analyses like eQTL and GWAS, recent advances in machine

learning can be used to predict in silico the effects of genetic variation. To facilitate the
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application of published machine learning models on custom data and to predict biological
effects of genetic variants, I have developed, in collaboration with a fellow PhD student,
Ziga Avsec (Prof. Julien Gagneur’s group, TU Munich, Germany), the software Kipoi
(www.kipoi.org).

The software has been designed to facilitate sharing and re-use of trained machine learning
models in genomics. Together with Ziga Avsec I have conceptualised and implemented
core elements of the platform. My major contribution in this software project was the
implementation of tools and features for the effect estimation of DNA variants.


www.kipoi.org
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Chapter 1
Introduction

Studying the association between DNA variation and disease risk has become an important
instrument to improve the understanding of the genetic architecture of common diseases.
About a decade ago this has become possible in a systematic way, when several groups
pioneered the application of genome wide association studies (GWAS) to search for risk
variants in a hypothesis-free manner. By now, thousands of genetically independent variants
have been associated with the risks of many of the common diseases and biomedically
relevant quantitative traits. Approximately 90% of the GWAS lead variants (the variant with
the lowest p-value of association) are localised in the non-coding space and ample evidence
has been gathered that most of these variants exert their effect by modifying gene regulation.
The remaining variants, which are localised in the coding portion of the genome alter the
function of the encoded proteins by changing their amino acid sequence or by introducing
nonsense codons leading to premature stops or nonsense mediated decay of RNA. One of
the main challenges of the post-GWAS era is to link risk and trait associated GWAS variants
that localise in the non-coding space to their target genes in order to define the effects they
exert on these genes. This requires a rigorous approach to identify the tissues and cell types
in which the associated variants modify gene function. Therefore highlighting how variants
influence the behaviour of tissues and cells.

In this thesis I have studied the gene transcription regulatory effects of human genetic
variation. To do so I have analysed datasets in which genetic variants as well as RNA obtained
from purified cells of human peripheral blood were measured in hundreds of individuals.
I have combined the genotyping and gene expression data from four different studies to
increase the power to identify expression quantitative trait loci (eQTLs). In a next step I have
integrated the association results with epigenome reference maps. In the studies for the final
part of my thesis I made use of recent advances in machine learning to predict in silico the

effects of genetic variation on gene expression. To facilitate the application of published
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machine learning models on custom data and to predict biological effects of genetic variants
I developed, in collaboration with a fellow PhD student, Ziga Avsec, the software Kipoi

(www.kipoi.org).

1.1 Gene expression and regulation

Eukaryotic cells consist of a nucleus, a membrane, and organelles, which are necessary
to compartmentalise cell function, enable the cell to proliferate, and perform its systemic
function [1, p9]. Within the nucleus of a cell resides the genomic DNA.

1.1.1 Primary sequence

The primary structure of genomic DNA is a linear sequence of 3.2 billion nucleotides,
organised in 23 chromosomes. The alphabet of nucleotides consists in four bases: adenine,
cytosine, guanine, and thymine, which are commonly abbreviated by their initial letter (A, C,
T, G). Parts of the human genome are genes that encode the amino-acid sequence of proteins.
To produce amino acid sequences, DNA is transcribed by the RNA-polymerase II protein
into messenger RNA (mRNA) [2, p448], which is subsequently translated into polypeptides
or proteins by the ribosomes. The regions of the DNA that are transcribed into mRNA define
the coding space of the human genome [2].

The coding space

Proteins are encoded by genes which are localised as linear blocks of DNA sequence.
Eukaryotic genes consist of several sections: A transcription start site (7.5S), untranslated
regions, exons and introns. The core promoter of a gene is where transcription is initiated
and where RNA polymerase II attaches to the DNA [2, p448]. At the TSS, RNA polymerase
IT opens the double stranded DNA and initiates transcription. Not all the sequence between
the TSS and the stop codon is translated - intronic sequences are excluded from the mRNA
by a mechanism called splicing. Alteration of the canonical genomic splice sites may modify
the residual mRNA open reading frame sequence and the resulting protein [3, 4]. As a
consequence the functionality of the protein product may be affected. Only a subset of what
is transcribed into mRNA is translated into proteins - this fraction of each gene is termed
coding. Transcribed regions that are not coding are untranslated regions (UTRs), which are

found at either end of the gene.


www.kipoi.org

1.1 Gene expression and regulation 3

The non-coding space

There are about 20,000 known protein coding genes in humans, of which the coding part
occupies about 2% (~64Mb) of the entire genomic space. The rest of the genome is known
as the non-coding space [5] of which the function is slowly being elucidated. Attempts
to stratify the vast non-coding space have so far led to the identification of biochemical
functionality of up to 80% of the human genome in at least one cell type [6].

The non-coding space contains centromeric regions (about 2% of the human genome
[7, 8]), non-coding genes, telomeres [9], scaffold attachment regions and regulatory regions
[10]. These regions may be overlapping in genomic space or in function in the same way as
exonic regions of one gene may act as expression regulatory regions for others [11]. Together,
the regulatory annotation of the genome which is information that is biologically stored
alongside the primary DNA sequence is termed the epigenetic profile.

To functionally characterise regulatory regions, the epigenetic profile is analysed in
conjunction with the binding of transcription factors. These orchestrate transcription and

therefore also control cell properties and cell type specific mechanisms.

Transcription factors Transcription factors (TFs) are proteins which are involved in the
regulation of the expression of genes. They can act by facilitating or inhibiting the recruitment
of RNA polymerase II [12]. There are an estimated 1,400 genes encoding TFs [13]. TFs bind
directly to DNA and can recruit cofactors to form complexes for expression regulation [12].
Therefore, studying where TFs bind in the genome helps to identify regions of relevance for
gene expression regulation.

Chromatin immuno-precipitation followed by sequencing (ChIP-seq) [14, 15] is a tech-
nique to query protein occupancy, such as TF binding and histone modification (see next
paragraph), along the genome. ChIP entails the chemical cross-linking of DNA and proteins,
followed by isolation and lysing of the cell nuclei. DNA is then fragmented and an antibody
specific to the protein or protein modification of interest is used to precipitate cross-linked
complexes. After reversal of cross-linking the DNA bound by the precipitated protein is
isolated and made into a library that is then sequenced. A typical TF, like GATAT1 binds at
around 4,700 unique sites [16].

Accessible chromatin DNA is wrapped around complexes of proteins - called histones -
forming a structure called nucleosomes [17-19]. A nucleosome consists of eight histones
and takes up 147 bases of linear DNA. Histones have a globular shape except for their
unstructured amino terminal ends (tails’) [20]. The amino acid chain of the tails can

be chemically modified by e.g. methylases and acetylases and the presence of some of
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those modifications were found to indicate expression regulatory genomic regions (see
paragraph: Epigenetic profile). Modifications of the histone tails are capable of orchestrating
the unravelling of chromatin to control the accessibility of DNA [20]. Accessibility of the
DNA sequence defines how well TFs can bind to a specific stretch of DNA in vivo. For a
TF to bind it is therefore a prerequisite that the potential binding site (defined by nucleotide
sequence) lies in accessible chromatin.

ATAC-seq (assay for transposase-accessible chromatin using sequencing) [21] is a tech-
nology to experimentally identify accessible chromatin regions, which are nucleosome-
depleted. Briefly, the assay uses enzymes (transposases) that insert sequencing adapters into
DNA; it does so preferentially in accessible chromatin. After PCR amplification only DNA
fragments with adapters are sequenced, enabling the identification of accessible genomic

regions.

Epigenetic profile As mentioned previously, histones can condense chromatin as well
as they can make parts of it accessible. Selected modifications of the N-terminal tails of
histones indicate regulatory relevant regions, known as enhancers, promoters, or repressors
[20]. Histone tail modifications associated with enhancers and promoters are combinations
of methylations and acetylations of lysins 4, 9, and 27 of histone 3, and a modified histone
2 [22]. The modifications of the amino acids of the N-terminal histone tails is dynamically
performed by specialised enzymes, amongst which methyl-transferases and kinases are the
most specific. Kouzarides assumes that therefore methylation is the most characterized
modification to date [20].

Enhancers for example can be identified by a monomethylation of lysin 4 of histon 3
(H3K4mel), and if they are in an ’active’ state if they also carry a acetylation of lysin 27 of
histone 3 (H3K27ac) [23].

Enhancers Enhancers are genomic regions that have been shown to facilitate or increase
expression of near-by as well as distant genes [24]. Therefore, the distant enhancer is
brought into spatial proximity by establishing the required three dimensional structure of the
chromatin [25]. This conformation may be established by the binding of structural proteins,
as well as TFs and RNA fragments. The resulting loops, together with chromatin accessibility,
influence gene expression by controlling the spatial density of regulatory regions, bound TFs
and other activating co-factors that modulate recruitment of RNA polymerase II [24, 26].
Enhancers are marked by acetylation of Lysine 27 of Histone 3 (H3K27ac), together with
monomethylation of Lysine 4 of Histone 3 (H3K4mel). Clustering of H3K27ac ChIP-seq

read density has been shown to identify particularly expression-enhancing regions of the
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genome, termed superenhancers [27, 28]. In my thesis I will be using both enhancer and

superenhancer regions to annotate eQTL variants.

1.1.2 3D chromatin conformation

Mechanistically, transcription factor binding is attributed an important role in gene expres-
sion regulation. Since this regulation acts through direct or indirect recruitment of RNA
polymerase 11, physical proximity between the regulatory genomic region that binds TFs
and the promoter of the gene is one of the prerequisites for the control of gene expression.
Enhancers can act over long distances and their mode of action has been explained by 3D
chromatin structure, which brings linearly distant genomic regions into physical proximity
[24].

There are many methods that try to elucidate the 3D structure of the human genome.
Methods like microscopy and fluorescence in-situ hybridisation (FISH) can only measure
few different genomic loci at low resolution [29]. Chromatin conformation capture [30]
techniques use cross-linking of DNA and protein, as well as sequencing for the measurement
of chromatin interactions. They therefore detect DNA-DNA interactions established by
proteins.

In HiC (Fig. 1.1) and Promoter Cacpture HiC (PCHiC) cross-linking of DNA and protein
at their binding sites is performed to maintain the proximity between interactors. PCHiC
relies on the technique of HiC (Fig. 1.1), but enriches for sequence fragments overlapping
gene promoters [31]. The enrichment is established by a hybridisation technique that was
adapted from whole exome sequencing: HiC libraries are hybridised to RNA baits which
had been designed for promoter regions and only the hybridised fragments are subsequently
sequenced [31]. Using this technique every measured interaction starts at a promoter-
associated fragment (bait) and ends at a promoter interacting region (PIR). PIRs can either
be another promoter associated fragment (bait) or at any other fragment of the genome. In
chapter section 4.4 I will explain how data from PCHiC experiments were used to map eQTL

variants to PIRs.

1.2 Genetic variation

Diploid organisms, such as humans, have two sets of chromosomes, one is inherited from
their mother and one from their father. In humans chromosomes 1 to 22 are termed autosomes,
and every human has two copies of them. Therefore, variants in all autosomal chromosomes,

can either be homozygous - two copies of one allele - or heterozygous - two different alleles
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Crosslink DNA Cut with Fill ends Ligate Purify and shear DNA;  Sequence using
restriction and mark pull down biotin paired-ends
enzyme with biotin

o 4

Y X

Fig. 1.1 HiC is a chromatin conformation capture technique. After cross-linking, DNA is
digested by a restriction enzyme (HindIII). Then ends of the two linked fragments are filled
with biotin markers, which are then ligated. After shearing of the ligated fragments, fractions
containing biotin are purified and paired-end sequenced. This way it is possible to map the
junctions back to the human genome and estimate interaction frequencies between observed
regions of the genome [30]. Image taken with permission from [32].

in one position. For bi-allelic variants, individuals in a population can therefore have one of
three possible genotypes: homozygous major (two copies of the more common allele in the
population), heterozygous (one copy of both allele), or homozygous minor (two copies of the
less common allele in the population). This disambiguation is fundamental for association
studies (section 1.2.1, page 8, and page 8).

Every individual carries a unique combination of DNA variants. Most variants are inher-
ited from ancestors, but new mutations occur randomly in every individual at an estimated
rate of 0.5x10~°bp~lyear—" [33]. From their generation at random, new alternative alleles
manifest over time at different genomic positions. Due to selection and other evolutionary
effects some alleles become more frequent in a population. Measuring the frequency of
occurrence of alternative alleles at every position of the genome gives the minor allele fre-
quency (MAF) for every variant. MAF is therefore the frequency of the less common allele
of a variant in a defined population. Genetic variants can have multiple alternative alleles
and the detection of new alternative alleles depends on sample size of the study [34]. Most
known variant positions in the human genome have only two alleles (are bi-allelic) [35].

Linkage disequilibrium (LD) is a manifestation of the genetic modes of inheritance.
It measures whether two variants are inherited independently from each other or - if in
linkage disequilibrium - two variants are inherited together more frequently than by chance
due to their physical proximity on the chromosome. LD poses a central challenge in
association studies as the similarity of inheritance of variants leads to correlation between

alleles, complicating the identification of those variants which are the drivers of an observed



1.2 Genetic variation 7

phenotype. Most association tests therefore select one ’tag’ or ’lead’ variant for every cluster
of highly correlated (high-LD) variants in order to simplify summarisation (more details see
section 3.2.1). Lead variants are not necessarily causal variants. Some prominent reasons
for that are noise introduced by limited sample sizes, and the sparsity of genotyping data
when genotyping arrays are used. An existing attempt to alleviate the limitation introduced
by noise is bootstrapping which helps to find a set of plausible causal variants. Additionally,
biological experiments such as functional assays may help to find causal variants, but also
they have their own biases and caveats.

Coding and non-coding variants

Variants in the coding space - in exons of genes - have the potential to alter, truncate, or
extend the amino acid sequence of the protein product. Therefore, non-synonymous (ns)
coding variants - variants that cause changes in the amino acid sequence of a protein - have a
potential to alter protein function and this may be contributing to the risk of disease. There are
thousands of coding single nucleotide polymorphism (SNPs) in the genome of an individual
and most of these do not alter protein function. Some variants may enhance or reduce
function with common nsSNPs having subtle effects on protein function and rare variants
may on occasions have profound effects on function. A prominent example of the latter are
mutations in the BRCAT1 gene, a locus in which some rare DNA variants are causal of an
increased risk of breast cancer and ovarian cancer [36—38]. There are bioinformatics tools
like AnnoVar [39] and VeP [40] to predict the functional consequences of coding nsSNPs.
In this thesis a machine learning method has been implemented to predict the effect of
non-coding variants on gene transcription.

Non-coding variants may lie inside genes, in introns or UTRs, or between genes. The
prediction of their effects is inherently more complicated, compared to coding variants.
The current theory suggests that a portion of the non-coding variants act via regulation
of expression levels of genes by modifying the binding affinity of TFs, or inhibiting the
correct chromatin conformation [41, 42]. These modes of action may affect the expression
of multiple genes and pathways, but the links between a variant and the affected gene cannot
trivially be established (see section 1.2.3). As already reviewed, 90% of association variants
identified by GWAS are non-coding [43]. Hence it is important to generate new experimental
data and analysis methods to link the associated variants with high confidence to their target
genes so that the GWAS results can be interpreted in the context of proteins and molecular

pathways which may be amenable to therapeutic interventions.
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1.2.1 Association studies

Association studies identify genetic variants that alter phenotypes by using sample cohorts.
Measured phenotypes and genotypes from all individuals are therefore compared to find
statistically significant effects. Associations are sought where the different alleles of a variant
explain alterations in the phenotype measurements.

Genome wide association studies

The key aim of disease association studies is to identify genetic variants conferring risk of
ill-health. Such studies are typically performed by using genotyping data from cohorts of
individuals with and without disease. Until the advent of genome wide association studies
(GWAS), the main approach for association studies for common diseases were based on
a single candidate gene or often even a single DNA variant. These candidate genes had
either been identified by studies of rodent models of human diseases or inferred as a putative
candidate gene based on the results of cell biology and biochemical cell signaling studies.
Just over a decade ago the first large scale GWAS for six common diseases was performed
[44]. The positive results of this and other early GWAS initiatives spurred on similar studies
for many other common diseases and also for clinically relevant disease-related traits (e.g.
lipid levels, blood pressure, kidney function parameters, blood cell indices). These initial
studies were followed by international efforts to bring data together for the purpose of meta-
analyses. These meta-analysis studies have now been replaced by GWAS in large prospective
cohorts like the UK Biobank [45-49]. Thousands of genetically independent variants have by
now been associated with the risk of common diseases [5S0] and the most recent GWAS for
blood cell indices catalogued nearly 3,000 lead variants for 36 properties of red blood cells,
platelets and leukocytes [51-55]. One of the major challenges for biology and medicine
is the interpretation of GWAS results into mechanistic explanations of how variants exert
their effects on the risk of diseases or the measured traits. An overview of some of those

approaches can be found in section 1.2.3.

Expression quantitative trait loci

Expression quantitative trait locus (eQTL) studies associate gene expression levels with
genetic variation [56]. More precisely, transcript levels of genes as well as genotypes
are measured for all participants in an eQTL study. For the association test the genotype
is represented as non-reference allele count: in diploid organisms like humans the non-
reference allele count can has values from O to 2 for every possible variant in the autosomal
chromosomes.
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One of the most common methods to perform the eQTL association test is by testing for
a linear dependency between the non-reference allele count and the transcript level of the
tested gene using data from all measured individuals [57-60]. The expression measurements
can be confounded by relatedness, age, sex and environmental conditions. Given that eQTL
studies require cohort sizes of at least hundreds of individuals (section 1.2.2) it is not feasible
to match samples for these co-factors and so they are usually accounted for as covariates in

the linear model.

Cis- and trans- effects

Genetic effects can be classified into cis- and trans-effects. In eQTL studies cis-effects are
seen as direct effects of genetic variation on gene expression and trans-effects as indirect ones.
Conventionally, cis-effects are tested by selecting a genomic region (e.g. 1 Mb) (cis-window)
around the gene body and testing for associations between variants in the defined region
and the gene transcript level. The assumption that variants in the proximity of the gene
promoter exert direct effects on gene expression is based on the working hypothesis that
those variants affect the binding of transcription factors, which act in their physical proximity.
Trans-effects are in practice identified as associations in which the variant lies outside the
cis-window. With indirect effects the expression of the affected gene is altered by a different
mechanism (e.g. biological pathway), which is associated, or at the least correlated with the
alleles of the eQTL variant. This technique of the identification and disambiguation of cis-
and trans-eQTLs neglects the long-range interaction of transcription factors with genes.
Attempts have been made to incorporate additional data in eQTL analyses to improve
variant prioritisation and characterisation [61, 62]. Neither of those tackle the issue of
distinguishing direct associations from indirect ones. Cis-effects may be identified by
allele specific expression analyses [63], where genotype phasing is used to identify which
allele causes increased or reduced expression in every individual. Alternatively, biological

perturbation experiments can be used to identify direct effects.

1.2.2 Minimum sample size for association studies

In order to detect associations between traits and common genetic variation (minor allele fre-
quency (MAF) > 0.05) samples from a minimum number genetically homogenous individuals
have to be tested. The sample sizes necessary for association studies depend on the strength
of the effects of the variants on expression levels and the frequency of the tested variants in
the population [64-66]. In eQTL studies it is possible to use fewer samples, because traits
are better defined by gene expression rather than systemic phenotypes or disease versus
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non-disease status. Furthermore, observed effect sizes in eQTLs are generally higher than in
GWAS [64]. In eQTL studies it is therefore possible to use sample sizes of 200 individuals,
depending also on the number of co-regulated genes and the number of variants affecting
gene expression [67].

1.2.3 Colocalisation

Results from GWAS reveal associations of thousands of variants with traits and common
diseases [50]. More than 90% of them are localised in the non-coding part of the genome
[43], making it far more challenging to identify the mechanistic link causing an association
compared to causal coding variants which alter the amino acid sequence of a protein.

For a better biological understanding of these associations in the non-coding space,
variants are linked to genes by various approaches: the simplest approach is by annotating
the associated variant with the nearest gene [68]. This carries a high risk of erroneous
assignments, as illustrated by Smemo et al. and Claussnitzer et al. for the FTO locus [69, 70].
Here, a body-weight associated variant, rs1421085, localises in an enhancer element that
lies in the first intron of the FTO gene, but was found to regulate expression of the gene
IRX3, located at a distance of 0.5Mb from the associated variant [69]. Before this long-range
association was found, studies had been conducted trying to define the molecular mechanism
by which FTO explains the GWAS trait, until Smemo et al. [69] showed in mouse models
that the transcription factor Irx3 is the true mediator of the body-weight effect. These findings
were later replicated in human primary adipocytes using CRISPR-Cas9 [70].

In agreement with the findings for FTO, approaches that leverage pathway analyses
revealed that genes affected by regulatory variants are often up to 2 Mb away from each
other [71]. Alternatively, information about three dimensional (3D) chromatin conformation
has been used to link variants to genes [28], however conformation and physical interaction
between distant DNA element does not necessarily convey function. Therefore, results from
eQTL studies have been used to annotate variants with associated genes, based on empirical
evidence at cell type resolution. This approach holds the promise to highlight the genes
which are controlled by GWAS variants and therefore affect the studied disease or trait.

Another approach to functionally link non-coding GWAS variants to their target gene is
by using statistical methods to determine putative colocalisation with eQTL variants. This
approach has been successfully applied to link GWAS variants to genes as well as tissues
and cell types for diseases like schizophrenia, immune-mediated diseases, including type 1
diabetes and inflammatory bowel disease and also for quantitative traits such as height and
body mass index [72, 61, 73-80].
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In my thesis I have bioinformatically processed and analysed four eQTL studies, which I
then colocalised with a GWAS that associated 36 blood cell indices of 173,480 European
individuals from the UK Biobank and INTERVAL cohorts [45] (section 4.3).

1.3 The haematopoietic system

The haematopoietic system is a paradigm for understanding the biology of stem cells, cell
proliferation, and diseases [81]. Blood was the first tissue in which a severe inherited disorder
named sickle cell anaemia, could be explained at the molecular level [82]. Furthermore,
haematopoietic stem cells are the most studied and best characterised tissue-specific stem
cells [83]. Owing to their accessibility they are clinically highly relevant since the most
common transplantation in medicine is the transplantation of stem cells obtained from
peripheral blood or the bone marrow [84]. Together, this shows the importance of blood in
biology and genomic research as well as for many diseases, including the plethora of immune
disorders.

The generation of all blood cells, haematopoiesis, starts from a multipotent haematopoi-
etic stem cell. The stem cells are rare and can mainly be found in the bone marrow at a rate
of one stem cell in 3x10° cells [85]. They have the potential to differentiate and to self-renew
at the point of cell division in order to maintain cell population size. The differentiation
process is summarised in the heamatopoietic tree (Fig. 1.2), which illustrates the different
branch points at which omnipotent progenitor cells commit to the myeloid and lymphoid
lineages [81, 86]. The different states of the blood cell progenitors have been mainly defined
by the use of monoclonal antibodies against cell surface markers. Most of the antibodies used
for characterisation are against Cluster of Differentiation (CD) antigens. When purifying
the different blood cells by cell sorting monoclonal antibodies against the CD antigens are
used to select the desired fraction of cells. Depending on the properties of the respective
cells positive or negative selection can yield desirable levels of purity and intactness of
cells. For monocytes for example positive CD14 selection is used commonly to achieve
high levels of purity [87-89, 79, 74]. The same is true for CD4 and CD8 T lymphocytes,
CD19 B lymphocytes, and also for neutrophils positive selection by CD15 is a recommended
purification procedure [90]. Platelets can be purified from platelet rich plasma by depleting
for leukocytes using negative selection with CD45 microbeads [91]. During my PhD thesis I
worked with data generated from these cell types following the cell type purification methods
mentioned above.

The haematopoietic tree displays the intermediate stages that blood progenitor cells

undergo until they have reached the final stages of precursor cells which generate the
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different types of blood cells present in the peripheral blood. The first step in the process of
stem cell differentiation involves the loss of the potential to self-renew, which is followed by
the gain of lineage commitment necessary to fulfil the tasks of the fully lineage committed

precursor cells.
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Fig. 1.2 The haematopoietic tree. Image taken from [92].

Overall, a healthy adult produces approximately 10'!-10'? new blood cells per day [93].
This output can be split along the different lineages of differentiation (Fig. 1.2): neutrophils
and monocytes belong to the myeloid branch [94, p3], which means they share common
progenitor cells with erythroblasts and megakaryocytes, the bone-marrow-residing precursors
of red cells and platelets, respectively [94, p111]. Lymphocytes belong to lymphoid branch
and the myeloid and lymphoid branches bifurcate at the level of myeloid-lymphoid progenitor
cells. The function of lymphocytes and myelocytes is substantially different: lymphocytes
form the adaptive immune system and can learn to identify new pathogens by establishing a
pool of T- and B-lymphocytes with memory of previous pathogen encounters. Cells from
the myeloid branch are essential for oxygen and carbon dioxide transport (red cells), blood
clotting (platelets), innate immunity (neutrophils, eosinophils, basophils) and phagocytosis
(neutrophils and different types of monocyte-derived macrophages).



1.4 Machine learning models 13

1.4 Machine learning models

In the course of my PhD studies I have used machine learning models for genomics. Together
with a fellow PhD student, Ziga Avsec from the Gagneur group at the Technical University
of Munich, Germany, we have identified that missing concepts for sharing and re-use of
published models are a major hindrance for enhancement of existing and the development of
new models. We have therefore developed a software platform that facilitates access to and
use of complex machine learning models in the hope to foster research on the regulation of
gene trasncription.

Machine learning is an area of artificial intelligence in which developers aim to build
models that can describe and predict observed data. Many approaches have been made,
including decision trees, nearest neighbour predictions, Bayesian models, and also neural
networks. Generally, models can be categorised into supervised and unsupervised machine

learning models.

Supervised machine learning models are used for problems where labelled data is avail-
able. In such cases for every input sample there is one class label, value, or other measure
available that describes the input sample. The model is then designed and trained to produce

the most accurate label predictions for given inputs [95].

Unsupervised machine learning models are used when no labels are available for model
input samples. Clustering algorithms are an example of solutions for such problems. In these
cases, the machine learning algorithm is used to identify structure in the data without further
information but the input samples themselves [95].

In my thesis I will only be using supervised machine learning models as the presented

problems involve labelled data.

1.4.1 Neural networks

The terms artificial neural network, neural network, and deep learning have been used to
describe a kind of machine learning model that was designed in resemblance to the basic
structure and function of the human brain [96].

The basic nerve cell - the neuron - has a soma and an axon. For a model of the brain
the main functionally relevant property of the neuron is its activation. Neuron activation
depends on the input it receives from synapses - junctions between its soma and axons of
other neurons. The activation of a neuron depends on the sum of its inputs and on an internal

threshold which is inherent to the cell. The activation (output) of the neuron is transmitted
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in the axon. From the early understanding of how neurons work and interact mathematical
models of the networks of neurons have been created as early as 1943. McCulloch et al.
[97] formulated an idea of how learning could work in a neural network. They described the
possibility that information could be encoded by different activation states of the neurons in
the network.

After this atomic model of biological neural networks, Rosenblatt, in 1957, developed
a conceptual idea of how capabilities of how the human brain may be replicated by a
machine - the perceptron [98]. The idea was published in a report to the Cornell Aeronautical
Laboratory, Inc. and captures important ideas, concepts, and caveats of modern artificial
neural networks. The perceptron was a concept that Rosenblatt envisioned to be implemented
for example as an electromechanical device. It would react on the 'phenomenological world’
recognising patterns and objects irrespective of the angle or aspect of their appearance
and it would identify patterns directly rather than searching through a pre-defined set of
recognisable patterns stored in memory. The perceptron should recognise similarities or
identities across optical, electrical, tonal, etc. inputs, in close resemblance to the brain.

Interestingly, Rosenblatt defined the (photo) perceptron as a black box with a video
camera at the input and printer or signal lights on the output. The perceptron would have to
learn to give the same output for images that belong to the same abstract class - for example
three dimensional objects displayed from different angles. Rosenblatt defined learning
as presenting random input samples that belong to the different classes and ’forcing’ the
corresponding correct output. Predictions should then resemble the learned associations.
Further on, he predicted that outputs of such a model would have a probability of being
wrong, which would not imply malfunctioning, but would be caused by using his statistical
approach of learning. He postulates that this probability of false predictions could be reduced
with additional training examples. All of this is conceptually true for state of the art machine
learning models.

The perceptron (black box) would have a layered and therefore hierarchical structure with
a sensory unit (now called: input layer), an association system (now called: hidden layer[s]),
and a response system (now called: output layer). The sensory unit would be a raster (now
called: input data matrix) and the association system would consist of multiple units. There
would be one or more connections between all elements of the input raster and the units of
the association system. Every unit of the association system (hidden layer) would calculate
a weighted sum over its connected inputs, where the weights may be positive or negative.
Additionally, the association system would have a threshold value to which the weighted sum

would be compared to produce an output. The output of the association system would be
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Fig. 1.3 Schema of a neural network. Fig. 1.3a shows the basic components of a perceptron
as defined by Rosenblatt [98]. The individual units of the association system are depicted
as coloured circles. Fig. 1.3b shows the schematic of one unit of the association system:
it accepts multiple inputs, multiplies every input with a factor (weight) that is specific to
every input and then the sum of all those values is calculated. Finally the weighted sum is
compared to a threshold value and a binary output is returned. Fig. 1.3¢ the basic schematic
of a neural network, with a symbolic number of hidden layers and connections. Model output
for every model task can be any numerical value. Fig. 1.3d the basic neuron is identical to
Rosenblatt’s idea, except that the threshold operation is replaced by an activation function,
which in most cases is non-linear.

linked to the response system. The response system would have few units (e.g. signal lights),
which were triggered based on the outputs of the association system.

Setting technical details and the exact setup of the different layers aside, Rosenblatt’s
perceptron is a remarkable summary of the basic concepts and the limitations of neural
network models. In Fig. 1.3 I show a visualisation of the basic elements suggested by
Rosenblatt.

Based on these foundations, empirical experiments, and theory, the current neural network
models have evolved. They use the basic concept of a layered approach as suggested by
Rosenblatt. An input layer, which is a numerical matrix representation of the input data is
connected to one or a stack of hidden layers. Finally, an output layer, which in most cases has
less units than the input layer, is connected to the last hidden layer (Fig. 1.3). Networks that
have many of those hidden layers are known as ’deep neural networks’, their use has coined
the term ’deep learning’. The computational units of hidden layers are artificial neurons. An

artificial neuron is designed in analogy to the biological neuron: it calculates a weighted
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sum over the input values, where every weight for each input is a constant property of the
neuron; the weighted sum is then converted to the output by a non-linear activation function.
The activation function is the generalisation of thresholding that produces binary output
(suggested for the perceptron). The architecture of a neural network defines the connections
of every neuron of one layer to the outputs of the previous layer. Different basic architectures

will be presented further on.

Training

The weights of all neurons of a network contain all the information that has been learned
from training data. An untrained neural network is initialised with random weights. During
training, weights are continuously updated minimising a loss function. The loss function
can be interpreted to measure the distance between the current state of the model and the
ideal state of the model in an arbitrary scale. In most supervised settings the loss function
measures the distance between output values calculated (predicted) by the current model
state and the desired model output (model fask) using training examples. The calculated loss
is then used to update the model weights. This is most commonly done by stochastic gradient
descent, where the most influential weights for a prediction are modified the most, taking
the calculated loss into account. Training is an iterative process, which involves prediction
followed by weight updates. It is finished when the training objective is reached, for example
if the loss cannot be reduced any further within a certain number of training iterations.

The state of the final trained model is therefore a function of the initial weight values
prior to training, the model architecture, the training examples and their order, the loss
function, the definition of the condition that defines when training is complete and other
factors. This indicates that practically it is almost impossible to replicate the exact same
model by re-training a model with the same initial weights.

Architectures

Neural network architecture, as well as their loss function, are parameters determining how
well machine learning models can capture and describe a given dataset. There are three basic
and popular layer types that are important design blocks for neural network architecture
(Fig. 1.4):

Fully connected layer In the fully connected layer all inputs of all neurons are connected
to all outputs from the previous layer. Additionally, all weights of all layers are independent

from each other and have to be learned individually. This type of layer is ’expensive’ as it



1.4 Machine learning models 17

Fully Convolutional Recursive
connected neural network neural network

Fig. 1.4 Schematic depiction of three basic neural network architectures. Grey dots indicate
elements of the input layer, green dots are neurons of fully connected layers, yellow dots are
the more complicated neurons of a recurrent layer, red dots are the model output.

requires the most memory and also because it has the most parameters to learn. The more
parameters that have to be learned from data, the longer the model has to be trained and the
more training examples are necessary. Fully connected layers can usually be found towards
the output of the model, where information from all parts of the layer input are relevant and

where input data has been condensed and compressed by previous layers.

Convolutional layer In convolutional layers every neuron only has a limited number
of inputs and ’slides’ along the input dimensions. Therefore the number of weights is
drastically reduced, which reduces training time, memory efficiency and necessity of input
data. Convolutional layers perform a task that in the field of image segmentation is known
as edge detection. These layers should be used where data-points that lie close together
are similar, or where those neighbouring data-points can be summarised as a higher-order
structure or pattern. Therefore first layers of deep learning models for genomics are mostly

convolutional layers as they are capable to identify patterns, such as DNA motifs.

Recursive layer In recursive layers the elements are complex neurons, which don’t only
depend on the current input, but also on their previous activation state. They therefore
have memory, so that contextual information can be stored within each neuron. This prop-
erty makes them especially interesting for sequential data. They are popular in language

modelling, handwriting recognition, speech recognition, etc. [99]

Convolutional neural network Convolutional neural networks (CNNs) are networks that

contain convolutional layers and may also contain fully connected layers. CNNs are feed-
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forward networks, which means that no memory components are available and the output

only depends on one input sample.

Recursive neural network Recursive neural networks (RNNs) contain at least one recur-
sive layer and may contain fully connected layers. RNNs retain information, therefore the
output depends on the current, and previous input samples, and their order. RNNs and CNNs
can be combined into convolutional recurrent neural networks (CRNNs) by the stacking

layers accordingly.

1.4.2 Software frameworks for machine learning

Machine learning applies statistical models to complex datasets. Often, the best fitting
algorithm has to be found for a dataset, making it necessary to train multiple models of
different kinds. The algorithms of the models remain mostly the same, irrespective of the
dataset. Therefore software packages - frameworks - have been developed to help train
and apply the models to data. Apart from facilitating the application, frameworks simplify
sharing of trained models. Additionally, frameworks usually implement many different kinds
of machine learning algorithms, which facilitates the comparison of models trained on one
dataset.

Neural networks are computationally very expensive during training and prediction,
because for every neuron in the network multiple multiplications and additions have to be
performed. This task can be parallelised very well, which lead to using graphical processing
units (GPUs) rather than the central processing unit (CPU) of a computer. GPUs are similar
to CPUs, but driven by the matrix operations necessary for computer graphics, they are
highly optimised to perform multiplication and addition in a highly efficient and parallel way.
The use of GPUs instead of CPUs for efficient calculations has enabled the recent successes
of deep learning. This comes at the price of having to use more technically challenging
code in order to access and use the power of GPUs. Driven by the success, deep learning
has become heavily used in many fields and industries and therefore also many different
software platforms have been developed for deep learning. The setup of these frameworks is
intrinsically more difficult than the setup of other machine learning frameworks as access to
GPU hardware needs to be handled by specialised software libraries. Software installation
managers like conda and brew help with the correct setup of those deep learning frameworks
as they enable efficient installation of software with all its dependencies even for computer
users without administrative privileges.

Deep learning frameworks bring building blocks like different kinds of hidden layers in

a ready-to-use format and offer well-tested implementations of training algorithms. This
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enables the developer to focus on the design of the network architecture rather than the

correct implementation.






Chapter 2

Methods

All methods that were used are elaborated in the results chapters. To avoid duplication this
chapter serves as an overview over and as an index of the methods. It provides references to
the individual sections of the results that describe methods and offers an alternative approach

to find sections of the text independently from the main narrative.

2.1 eQTL analysis

2.1.1 Datasets

Expression quantitative trait locus (eQTL) datasets of purified human blood cells were
acquired from collaborators (section 3.1, page 25). At the time when the data was shared
two datasets were still unpublished. The eQTL dataset from the CEDAR project was kindly
shared prior to the publication [79]. The BLUEPRINT Consortium platelet eQTL dataset
was shared and is not yet published.

2.1.2 Data preprocessing

In order to facilitate the joint use of the eQTL datasets from the four studies a unified
preprocessing pipeline was designed (section 3.2.1, page 28) and validated (section 3.2.1,
page 32). The preprocessing pipeline also included the correction of the bead array probe
annotation and estimation of minor allele frequencies and Hardy-Weinberg equilibrium. The
aim of the unified preprocessing was to reduce technical noise and batch effects caused by

study-specific preprocessing pipelines.
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2.1.3 eQTL analysis

After preprocessing cis-eQTL analyses were performed (section 3.2.1, page 30) i) for the
individual datasets and ii) after aggregating datasets across studies by cell type to maximise
the number of samples.

As an alternative to the default cis-eQTL analyses, a way to use three dimensional inter-
action data (Promoter capture HIC) as a prior for eQTL testing was developed (section 4.4.2,
page 64).

2.1.4 LD clumping to compare associations

Results of association test are often summarised by the lead variant, but depending on linkage
disequilibrium (LD) between associated variants it may happen that lead variants found in
different studies are part of the same association signal (explanation: section 3.2.1, page 32).
To compare association signals across studies or across cell types variants were clumped

based on pairwise LD (section 4.1, page 48).

2.1.5 Replication of association signals

In order to assess whether eQTL associations were present in a replication cohort the LD-
clumping approach was extended to sub-threshold associations. For these the discovery-signal
was genome wide significant, but the replication signal was only required to pass a lenient
threshold of p < 0.05 (section 3.2.4, page 40).

2.1.6 Annotation of eQTL variants

eQTL results were annotated with different genetic features. An overlap was assumed if the

variant lied within a genomic region that was tagged as:

» ATACseq peaks (section 4.2, page 52)

» H3K27ac peaks (section 4.3.1, page 57)

To assess properties of low-frequency eQTL associations, eQTL variants were annotated
with UK10K [100] minor allele frequency data (section 3.2.3, page 38). Finally it was tested
whether the effect size of eQTLs was related to the gene constraint score (pLI) (section 4.5,
page 75).
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2.1.7 Colocalisation with GWAS

Colocalisation - statistically linking GWAS variants to corresponding eQTLs associations -

was performed using the Astle et al. study [45] (section 4.3, page 54).

2.1.8 Integration of PCHiC data

Preprocessing of PCHiC

PCHIC interaction data had to be re-annotated prior to analysis (section 4.4.1, page 64).

Enrichment of eQTLs in PCHiC PIRs

To assess the gene expression regulatory relevance of PCHiC the enrichment of eQTL
associations in promoter interacting regions (PIRs) was assessed (section 4.4.3, page 69).
PCHiIiC promoter connectivity and transcript level variation

It was assessed whether the number of PCHiC connections of a promoter was related to
transcript level variation (section 4.4.3, page 69). The calculation included a normalisation

of transcript level variation to reduce mean expression level bias.

2.2 Genetic variant effect prediction using deep learning

2.2.1 Implementation of the software environment

A software platform for sharing trained machine learning models was developed to facilitate

comparison and re-use of published models (section 5.2.1, page 87).

2.2.2 Variant effect prediction

Within the above framework algorithms for the prediction of variant effects based on model

predictions were implemented (section 5.3, page 92).

2.2.3 Model and data visualisation

To facilitate the interpretability of model predictions and of variant effect predictions visuali-

sation tools were integrated in the software platform (section 5.4, page 98).






Chapter 3

eQTL datasets

In the last decade high-throughput measurements of genotype and molecular traits have
enabled association studies involving hundreds to thousands of individuals [88, 89, 87, 79,
101, 102, 74, 78]. One of these kinds of analyses identifies genetic variants that modulate
gene expression - expression quantitative trait loci (eQTLs). eQTL studies identify genetically
explainable gene expression variation in a tissue and potentially cell type specific manner
[87, 77]. The results of these studies can be used to interpret and explain results from other
studies such as genome wide association studies (GWAS) [103-105, 72, 106—108, 73, 109,
75].

In this chapter, I will discuss how I have reprocessed and integrated eQTL datasets of
seven purified blood cell types that were generated by collaborators in different laboratories.
I will show that the increased sample size enables the identification of additional associations,
and I will compare my cell type specific eQTL results to results from a whole-blood eQTL
study.

3.1 Available eQTL datasets

The expression datasets used in this thesis are all based on measurements made by the
expression Bead Chip technology from the same vendor, namely Illumina. All but one of the
studies used the same Chip version (Illumina HumanHT-12 v4.0).

Expression Genotypes
Cardiogenics Tllumina Human-Ref-8 v3 BeadChip Human 610 Quad Custom array and Sentrix Human Custom 1.2M
CEDAR Illumina HumanHT-12 v4.0 Expression BeadChip Illumina Human OmniExpress 12 v1.0 BeadChip
WTCHG Illumina HumanHT-12 v4.0 Expression BeadChip Illumina Human OmniExpress 12 v1.0 BeadChip
BLUEPRINT (PLT) Illumina HumanHT-12 v4.0 Expression BeadChip Whole genome sequencing

Table 3.1 Available microarray-based eQTL datasets.
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In terms of probe content the lllumina Human-Ref-8 v3 BeadChip is half of the lllumina
HumanHT-12 v4.0, where 96% of probes of the former are also present on the latter. The
original results from experiments from different laboratories were either retrieved from
ArrayExpress [110] or from the laboratory which had performed the experiment. The details

of the experiments are reviewed briefly.

Wellcome Trust Centre for Human Genetics (Julian Knight, University of Oxford, UK;
WTCHG) Data was obtained from ArrayExpress [110] in raw and preprocessed format.
Cell types included neutrophils [111], total B-cells [87], and monocytes [112]. Expression
results using RNA from four states of monocytes were generated; non-activated or naive, 2
hours after activation with lipopolysaccharide (LPS), 24 hours after activation with LPS or
with ¥ interferon. The corresponding genotype data of the same individuals was obtained
from the EGA [113]. For the work reported in my thesis I have not used expression data

from activated monocytes.

The CEDAR project (Michel Georges, Université de Liege, Belgium) For the CEDAR
project expression data was generated using the RNA samples from six blood cell types
(neutrophils, monocytes, CD4+ T lymphocytes, CD8+ T lymphocytes, CD19+ B lymphocytes
and platelets) obtained from 300 healthy individuals. The preprocessed expression data was
made available (the preprocessing was a joint effort of Julia Dmitrieva from the Georges
group and myself) together with the corresponding genotyping data.

The Cardiogenics Consortium eQTL project (Nilesh Samani/Willem H Ouwehand,
University of Leicester/University of Cambridge) The Cardiogenics consortium gener-
ated expression using RNA samples from monocytes and macrophages obtained by culturing
of monocytes in the presence of DMEM for a period of up to 5 days [88, 89]. The consortium
processed expression and genotyping data from 395 healthy individuals from the Cambridge
NIHR BioResource [114] and 363 individuals with a previous diagnosis of coronary artery
disease. Participants of the latter group were enrolled at hospitals in Leicester, Lubeck,
Munich and Paris. Raw and preprocessed data were retrieved from a study archive at the
University of Cambridge.

The BLUEPRINT Consortium eQTL project (Kate Downes, University of Cambridge)
The BLUEPRINT consortium generated an eQTL dataset for monocytes, neutrophils and
CD4 T-lymphocytes from 200 healthy individuals from the Cambridge NIHR BioResource
for which RNA samples were analysed by RNA-seq [115, 74]. The same donations of blood
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used for the isolation of leukocytes were also used to recover platelets. RNA was obtained
from the platelets using a validated protocol and applied to Illumina bead chip arrays to
measure transcript levels. Since the integration of RNA-seq in the analyses in this thesis
would introduce technical noise only the platelet dataset was used. Genotyping results were
obtained by whole genome sequencing and were made available by the group of Nicole

Soranzo at Wellcome Sanger Institute, Cambridge.

Cardiogenics CEDAR WTCHG BLUEPRINT (PLT)

Monocyte 758 300 432

Monocyte + 2h LPS 432

Monocyte + 24h LPS 432

Monocyte + 24h IFN 432

Macrophage MO 614

Granulocyte Neutrophil 300 101

Total CD4+ T-lymphocyte 300

Total CD8+ T-lymphocyte 300

Total CD19+ B-lymphocyte 300 283

Platelet 268 156

Table 3.2 Microarray-based eQTL datasets used in this thesis. Number of individuals for
whom genotyping and expression data were available are presented.

3.2 Merged analysis of datasets

Increased sample size in eQTL studies increases the number of identifiable associations in
common variants and enables the identification of associations with low frequency variants.
A typical approach to increase sample size is by meta analysis in which summary data from
individual studies are combined. Alternatively, the raw input data can be reprocessed for a
single joint analysis. A joint analysis, although requiring far more analysis time, preserves
more power to detect associations compared to the meta-analysis approach [101]. Having
access to the source datasets for the four eQTL studies (data generated on the same platform)
provided a unique opportunity to design an analysis pipeline for the unified preprocessing of

all available expression datasets.
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3.2.1 Preprocessing expression data

Starting from the raw bead chip signal intensity data, I designed a preprocessing pipeline
to fit all needs of individual datasets. The preprocessing was done in R version 3.2.1, the
procedure was based on recommendations in the R package lumi [116], an approach that
was previously also taken by Fairfax et al. [112]. Most of the following analysis steps were
performed using the lumi package allowing the processing of the raw data in the same and
consistent way:

* Log?2 transformation

* Qutlier detection based on distance from sample center. Threshold is scaled by median

distance from center. (detectOutliers in lumi package)

* Removal of duplicate samples, by selecting replicates with highest median probe
intensity

* Robust spline normalisation (RSN) within the batches, datasets and cell types. RSN
from the lumi package was used.

* Batch correction with ComBat [117] within datasets and cell types. ComBat from the
sva package was used (for details, see below).

* Only keep probes with significant expression p-value (Th: p<0.01) above background
level in at least 2.5% of all samples.

* Calculate PEER (version 1.0) covariates using 10 factors and mean as to be added to

the model during calculation. [118]

Key steps of the analysis pipeline will be dicussed in greater detail because the data
processing included quality control measures, including the detection and removal of outliers.
Principal component analysis (PCA) was used to identify samples with evidence for being
an outlier in the processed and reprocessed data. Next, data was normalised using RSN.
Several other normalisations were tested, such as simple scaling normalisation and quantile
normalisation. Their performance was compared by reviewing expression level distributions
and PCA across samples - RSN resulted in the most homogeneous outputs (data not shown).
Batch correction was performed using ComBat [117] for datasets in which microarray
expression data was processed in batches. Data of the four studies was produced in batches
for at least one of the cell types. ComBat was executed with default parameters and without

using covariates. After batch correction the residual batch effect was reviewed using PCA
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and expression value distribution. Finally, 10 covariates were estimated for every dataset
independently using PEER. These were subsequently used as covariates in the association
tests.

After successful preprocessing of the expression data, the expression bead chip probe
annotation was corrected. The used chip contains measurement nucleotide probes of the
length of 50 bp and every probe has a unique identifier assigned and tags a transcript of a
human gene. The probe identifiers are assigned to gene names by the manufacturer, but the
annotation delivered by Illumina was shown to be inaccurate [119]. Therefore probes were
annotated with R package ReAnnotator [119]. ReAnnotator maps the probe sequences to
an mRNA reference database and consequently assigns probes to transcripts. Apart from
annotating probes, ReAnnotator also produces a mapping quality as output. I removed
the annotation of 10,002 probes with a bad mapping quality. The probe sequences may
correspond to RNA of a genomic region harbouring a common variant (MAF > 0.05 in
1000 Genomes). Transcripts containing the same allele as the probe sequence could then
preferentially bind to that probe, thereby distorting the association signal of the given probe.
Therefore 2,748 probes overlapping common variants were excluded from further analyses

by removing their annotation.

Genotyping data

For three of the four datasets, Illumina genotyping microarrays were used to measure the
genotypes of the DNA samples. These arrays were designed to query the genotype of a
sample at multiple positions of the genome (Illumina Human OmniExpress 12 v1.0 BeadChip:
733,202 SNPs; Human 610 Quad Custom array and Sentrix Human Custom 1.2M: 1,115,839
SNPs and 80,128 CNVs). Based on linkage disequilibrium (LD) in the population, the
density of these measurements can then be computationally increased (imputed) giving
a more complete set of the genotypes of the individuals. To increase the density of the
genotyping data, the Sanger Institute Imputation Service [120] has been used with the
Haplotype Reference Consortium release 1.1 (HRC) reference panel for imputation and
EAGLE for pre-phasing, which are default settings. Phasing attempts to detected which
alleles of a set of consecutive variants lie on the same chromosome, again by leveraging
population level data. Pre-phasing is necessary for the pipeline setup of the Sanger Imputation
Service.

The results after imputation contain information on the imputation quality of every
variant. This measure, as well as Hardy-Weinberg equilibrium (HWE) p-value, and MAF, are
important quality control measures for individual variants. The HWE p-value estimates the

probability that the variant is inherited by random mating, and negligible mutation, migration,
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stratification, genetic drift and selection [121]. A threshold on the HWE p-value can be used
to detect genotyping errors [121].

The MAF measures the relative occurrence of the less common allele of a variant in
a population. The MAF of all measured variants in the dataset is obtained by counting
alleles. Before testing the association of a variant with the expression of a gene, variants were
reviewed of being imputed correctly (imputation score > 0.7), fulfilling HWE (HWE p-value
> 107%) and for being common enough so that sufficient observations of gene expression
for homozygous minor individuals are present (e.g. MAF > 0.05). When compiling the
genotyping data, no variants were excluded, but all variants were annotated with these three
metrics.

In the association test of the default eQTL analysis only variants were used that had an
imputation score > 0.7, HWE p-value > 1076, and a MAF > 0.05. It is explicitly stated if
for an analysis variants not meeting one or several of these three metrics were used. The
advantage of retaining variants that don’t pass the default thresholds is that any variant that

has been imputed can be tested on demand without rerunning data preprocessing procedures.

eQTL analysis

cis-eQTL analyses find associations where genomic variants in the proximity of a gene
regulate the expression levels of the RNA generated from the respective gene. To identify
these associations, only variants were tested that passed quality control measures and lie
within the gene body or within 1 Mb windows flanking the 5* and 3’ of the tested gene. The
eQTL tests were performed using a linear mixed model (LIMIX version 0.8.5 [59]) taking
population structure into account. Population structure within the samples was estimated by
calculating the normalised covariance matrix of genotypes. Ten PEER factors were used as
covariates for every dataset. Identification of independent association signals was performed
by forward-selection - recursively adding the strongest associated variant of the previous
association test as a covariate. Up to five iterations of forward-selection were performed,
identifying up to five independently associated variants with the expression of one gene. This
procedure is explained in greater detail in the next section.

I chose an unconventional way to perform the association test using the linear mixed
model: in every association test, including the test for independent associations I regressed
out all PEER covariates as well as the forward-selected genotypes prior to testing associations.
The residuals specific to every round of forward selection were then tested with the linear
mixed model. This is in contrast to the usual procedure using forward-selected genotypes as
covariates in the model when testing for associations. The reason to implement this procedure

was that in some cases high correlation (r > 0.99) between genotypes and covariates led
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to incorrect effect estimation by the linear mixed model and hence to strong false positive
association results. The aforementioned procedure overcomes this issue, but also means a
slight loss of detection power.

The method explained in the previous paragraph overcomes the problem of highly
correlated variables in a linear model and hence delivers reliable detection of independent
association signals. A caveat of the method is that it does not give easily interpretable effect

size estimates for independent association signals. I solved this by using a two-step approach:

1. Identify the independent lead variants using the residual-based approach mentioned

above.

2. Re-run the linear mixed model for all iterations of forward-selection using normalised
fluorescence intensity measures as phenotypes, the PEER factors and the previously
(forward) selected lead variants as covariates in one model to test for association with

genetic variants.

3. Extend the results from the residual-based analysis with the effect size estimations of
the full model in 2.

With this approach of re-estimation of effect sizes I take advantage of the robustness
of identification of independent lead variants with the residual-based analysis, as well as
estimating interpretable effect sizes, using the full linear mixed model with the defined
independent associations. The unit of the effect size after re-estimation is the normalised

binary logarithm of fluorescence intensity (logz(FI)).

Aggregation of studies When using expression and genotyping data from more than one
study for eQTL tests the expression and genotype data were stacked along the sample axis.
The covariates were added, so that when using three datasets with 10 PEER factors each, in
total 30 covariates were used in the joint association test. Covariate values for unobserved
samples were set to zero. With this setup also the batch effect caused by joining datasets
was captured. After performing eQTL association tests, the genome wide significance level
was assessed in the following way: for every probe and every iteration of forward-selection,
Bonferroni correction was performed individually. Next, the strongest associated variant
was selected individually for every probe and every iteration of forward-selection - if for
example five iterations of forward-selection were performed, then five lead (or tag) variants
were selected. The false discovery rate (FDR) was calculated for every iteration of forward
selection independently using the Benjamini-Hochberg procedure [122]. Therefore, with five

iterations of forward selection, the Benjamini-Hochberg procedure was executed five times
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on the individual sets of Bonferroni-corrected variants. Finally, a threshold on the FDR of

0.01 was selected to define the genome-wide significance threshold.

The effects of LD on association tests

Linkage disequilibrium (LD) is a manifestation of the modes of inheritance. It measures
whether two variants are inherited independently from each other or - if in LD - two variants
are inherited together more frequently than by chance. The LD is measured as the coefficient
of determination (%) and ranges from O to 1, with 1 indicating perfect LD between two
variants. Typically LD reduces with the distance between variants reflecting the increasing
chance of recombination events during meiosis. LD manifests as a correlation of genotyping
data and causes an eQTL association test to link differences in transcript levels to a set of
variants rather than a single one. Hence, variants in high pairwise LD necessarily yield
similar levels of association strength thereby creating challenges when attempting to identify
the functionally causal variant. As genotype correlation due to LD is consistent for common
variants across similar populations, results of eQTL association tests are often reduced to
reporting the lead variant at a position. This is the variant for which the strongest association
was found in terms of p-values [123, 124].

Since gene regulation is a complex procedure it is likely that, for a single gene, multiple
variants control gene expression independently. It is therefore biologically relevant to
disentangle the associated variants by their correlation structure using conditional eQTL tests
(see section 3.2.1, page 30). To indicate that the lead variant is not necessarily the causal
variant, the lead variant and variants in high pairwise LD are called a signal. Conditional
analyses can reveal independent association signals, each tagged by their own lead variant.

The above forward-selection conditional analysis was applied for all eQTL analyses.

Validation of preprocessing pipeline

The expression and genotyping data of non-activated monocytes from the WTCHG study
were used to check the validity of the preprocessing pipeline [112]. Association tests for
eQTL identification were performed using the original preprocessed data [112] and the newly
preprocessed data using the analysis pipeline described above.

The resulting associations were compared by probe identifier. Furthermore, LD between
the lead variants which were associated with the same probe in the two differently prepro-
cessed datasets was calculated. In case of high pairwise LD (> > 0.8) the two association

signals were assumed to be identical. If 7> < 0.8, then it was assumed that the two pre-
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processing procedures yielded independent association signals. For this analysis only the
primary lead variants were considered.

For associations with p < 107° mostly the same identical signals were found to be
associated with the probes (Fig. 3.1a and Fig. 3.1b). The weaker the association signals, the
more likely it was that the two analysis approaches identified independent primary association
signals (LD values of 7> < 0.8). This observation does not imply that the association signals
found in the original preprocessing were lost in the new preprocessing, rather it indicates a
re-ordering of the association landscape, where the order of strongest signal, second strongest
signal, etc. were swapped. This swapping indicates the sensitivity of eQTL analysis to data
preprocessing.

In total, 88% of associated expression probes (eProbes) in the original preprocessing
were also eProbes using the new preprocessing pipeline. Amongst the eProbes of the original
and newly preprocessed data 23% had the same strongest signal with > > 0.8. For the
remaining 77% the newly identified strongest association signal was independent (Fig. 3.1a
and Fig. 3.1b).

To demonstrate that variants that were associated in the original preprocessing were still
associated in the new preprocessing, I extracted the raw p-values of the lead variants in the
original preprocessing and the p-values calculated using the new preprocessing (Fig. 3.1c).
This analysis confirms that eQTL datasets are sensitive to preprocessing and that preprocess-
ing alone can lead to the swapping the order of independent signals.

The results depicted in Fig. 3.1 show the plausibility of results produced by the new
preprocessing pipeline when compared with the original results reported for the WTCHG
study. The analysis also illustrates how sensitive eQTL data is to preprocessing. This in turn
indicates the crucial importance of homogenising data generated by different groups by a

unified preprocessing analysis before merging data.

eQTL results after preprocessing

After successful preprocessing of the expression and genotyping data a cis-eQTL analysis
was performed for all datasets individually. For every tested gene, variants within 1 Mb up-
and down-stream of the gene body, including the gene body itself were tested for association
with the gene’s transcript levels. An overview over the number of eQTLs identified for each
of the cell types is presented in table 3.3. Only primary association signals (ignoring results
from conditional analyses) are displayed.

Using the same data, an eQTL analysis was performed by aggregating the expression
and genotyping data by cell type across the studies. The resulting increase in sample size

for e.g. monocytes led to the discovery of additional eQTLs as shown in table 3.4. The
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Fig. 3.1 Comparison of the association results obtained with the newly and original prepro-
cessed data. Fig. 3.1a eProbe associations: Red dots are associations where the lead variants
identified by the two analysis are in high LD (r? > 0.8). Fig. 3.1b eProbe associations: Blue
dots are associations where lead variants were identified in both analysis but the respective
lead variants are in LD with > < 0.8. Fig. 3.1c Replication of association p-values after
new preprocessing. Association p-values of original and the newly preprocessed dataset
are displayed on the horizontal and vertical axis, respectively. Each dot represents a single
lead variant - eProbe combination. For the new preprocessing 10 PEER factors have been
included.
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Cell type CD Marker Study dataset # samples # probes tested #eQTLs # eGenes
Monocyte CD14 CEDAR 301 17,270 2,192 1,866
Monocyte CD14 Cardiogenics 758 11,271 4,577 4,014
Monocyte CD14 WTCHG 421 16,160 4,474 3,686
Macrophage MACx Cardiogenics 599 11,136 4,148 3,674
Neutrophil ~ CD15 CEDAR 303 17,094 1,081 923
Neutrophil ~ CD15 WTCHG 109 16,249 1,177 1,001
B-cell CD19 CEDAR 298 17,175 1,230 1,058
B-cell CD19 WTCHG 285 16,380 2,854 2,429
T-cell CD4 CEDAR 309 17,056 2,359 2,012
T-cell CDS8 CEDAR 304 17,098 1,891 1,619
Platelet PLTxx BLUEPRINT 151 8,653 1,019 849
Platelet PLTx CEDAR 236 16,973 458 395

Table 3.3 Primary eQTL signals per blood cell type. *macrophages were obtained by culturing
of CD144+ monocytes and were paired samples with the monocytes from the Cardiogenics
study; *xplatelets were obtained from whole blood by centrifugation and no monoclonal
antibody was used for their purification.

increase in power by merging datasets from the different studies will be discussed in the

following section. The Cardiogenics cohort consists in healthy individuals and others that

were diagnosed with coronary artery disease. Analyses with and without the affected sub-

cohort showed that the gain in power outweighed the added noise which led me to the

decision to use the full Cardiogenics dataset for all further analyses.

Cell type CD marker # samples # probes tested #eQTLs # eGenes
Monocyte CD14 1,480 10,113 5,368 4,731
Macrophage MAC 599 11,136 4,148 3,674
Neutrophil ~ CD15 412 14,986 1,831 1,539
B-cell CD19 583 14,805 2,556 2,183
T-cell CD4 309 17,056 2,359 2,012
T-cell CD8 304 17,098 1,891 1,619
Platelet PLT 388 8,293 1,031 862

Table 3.4 Primary eQTL signals per cell type after merging of the data from the different

studies
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3.2.2 Increase of power to detect eQTLs

To show the effects of an increased sample size in eQTL analyses, the results gained from
merging the monocyte datasets from the CEDAR, Cardiogenics and WTCHG studies were
compared to the results of the original studies. This analysis shows the relation between
increased sample size and the number of eQTLs detected and the proportion of replicated
eQTL associations identified in the original individual studies.

The preprocessing of the data as well as the criteria for the selection of variants and
genes were identical across analyses, e.g. the datasets of all five studies were preprocessed as
described in section 3.2.1 and cis-eQTL associations with gene expression levels were tested
including all variants in proximity (<1 Mb up- or down-stream of the gene body) or within
the gene body. Only chip bead probe signals and genotyping variants passing the quality
control criteria (section 3.2.1) were used. In order to achieve the same minimum number of
gene expression observations for at least three individuals homozygous for the minor allele
in all analyses, a minor allele homozygosity count (MAC) threshold was used instead of a
threshold on variant MAF. This approach improves the robustness of expression estimation
for the group of individuals homozygous for the minor allele. For analyses in this section a
MAC-threshold of 3 was used, requiring at least three observations of homozygous minor
carriers.

As mentioned in section 3.2.1, slight alterations in the input data, for example caused
by differences in preprocessing, may result in the identification of apparently different lead
variants. Therefore and because of LD between variants replication of eQTL associations
cannot be reduced to comparing lead variants. To overcome this, pairwise LD was calculated
between lead variants identified in the merged monocyte eQTL dataset and the ones found in
monocyte eQTL data from the individual studies. An association signal was assumed to be
identical if for the same probe identifier the pairwise LD amongst the associated variants was
r?>0.38.

First, the merged dataset for monocytes was used as a discovery set, revealing that the
analysis of the merged dataset replicated the largest portion of eQTLs observed in the analysis
of the data of the individual studies (first three bars in Fig. 3.2a). The increased number
of eQTLs observed in the analysis of the merged data compared with the analysis of the
data from the individual studies are mainly explained by the stringent threshold of requiring
at least three homozygous individuals for the minor allele. The sparsity of eQTLs in the
analysis of the data of the original studies at lower minor allele frequencies is illustrated by a
lower density of blue data points in Fig. 3.2b.

The following conclusions can be drawn for the re-analysis of the data for monocytes
from the three original studies (Cardiogenics, CEDAR, WTCHG) and the analysis of the
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Fig. 3.2 Replication and gain of power for eQTLs detection in monocytes. The replication
of eQTLs observed in the analysis of the data from the three original studies with *merged’
representing the results obtained after aggregated data. Fig. 3.2a The top bar diagram shows
the number of eQTL replications in the merged data on the vertical axis and the bottom
panel shows to which studies the replication refers. The column in orange illustrates the
new eQTL signals not previously observed by analysis of the data of the original studies.
Fig. 3.2b Graph showing the correlation between MAF and effect size (B, [log2(F1)]) of the
eQTL on the horizonal and vertical axis respectively. New, previously unobserved eQTLs
are in orange and replicated other are in blue. f is displayed on the vertical and MAF on the
horizontal axis.
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merged data for monocytes of these three studies. First, 94.94% of the original eQTLs are
replicated in the analysis of the merged data. However the remaining 5.06% were not detected
in the analysis of the merged data (Fig. 3.2a); e.g. 299 eQTLs identified in the Cardiogenics
data remained unobserved in the analysis of the merged data and in the analysis of the
CEDAR and WTCHG data. The most likely explanations for this lack of replication are: 1)
none of the eQTL studies performed to date are of a size that the power for identification
of associations is saturated and whether an eQTL is identified or not remains an issue of
sampling, ii) the original association may have been false-positive [125], iii) the eQTLs
identified only in Cardiogenics may be specific to the cohort which included in addition
to samples from 395 healthy individuals also samples from almost an equal number (363)
of individuals with a history of coronary artery disease and iv) relatively weak association
signals from the analysis of the Cardiogenics data may be *washed-out’ as a consequence of
the merging of the data [126].

With the increase in sample size the number of eQTLs with relative small effects on
transcript levels increases and this is observed across the entire spectrum of MAFs (Fig. 3.2b).
Finally 1,547 new eQTLs were observed in the analysis of the merged data which were
unobserved in the analysis of the original data and a substantial portion of these new ones
were observed for low MAFs.

Altogether, merging of eQTL study data can improve power but reprocessing of the
measurement data is important to minimise the risk of additional noise being introduced by
slight differences in preprocessing approaches.

3.2.3 Low-frequency variants

Under normal evolutionary assumptions one would reason that rare variants, which are
generally recent and population-specific [127, 128] have a greater chance of exerting large
effects on expression than common variants [45]. This observation is generally confounded
with the lack of power to detect associations of rare variants with weak effect sizes.

The chance of detecting eQTLs with low MAFs and large effect size is correlated with
the number of individuals included in the analysis. The merged dataset generated as part of
the research for my PhD provided a unique opportunity to search for low frequency variants
with large effect sizes on transcript levels in monocytes. In the initial analysis which focused
on the replication of associations between studies presented in section 3.2.2, the analysis
for eQTLs was constrained to relatively high MAFs by setting a threshold of having at least
three individuals homozygous for the minor allele being included in the analysis.

In a next analysis step this high threshold was removed and all 7,191,953 variants passing
quality control and with a MAF > 0.01 were included in the association test. The results
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Fig. 3.3 Low-frequency variants in the merged monocyte dataset. Orange are rare variants
with a MAF < 5% in the UK10K cohort [100]. Fig. 3.3a Effect size and MAF estimated
from the sample genotypes of all lead variants in the merged dataset. Fig. 3.3b Number
of eQTLs found in each iteration of forward-selection. Fig. 3.3¢ Example of a rare variant
with a strong association and a large effect size. Illumina bead array probe 6860048 was
associated with variant 1:7962498:C:G, p = 1.94594x10~273, effect size = 2.50104 log, (F1I),
MAF: 0.0294118 in study population. The associated variants were annotated with the MAF
in the UK10K cohort [100]. This annotation was used for visualisation purposes as an upper
limit for the selection of low-frequency variants. Only variants with a MAF < 5% in the
UKI10K cohort were considered low-frequency (Fig. 3.3a)).
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of this association analysis, which are shown in Fig. 3.3a identified 7,693 eQTL variants
(up to five independent signals per probe, FDR < 0.01). When annotating the lead variants
with MAF estimates from the UK10K cohort [100] (MAFyki0k), 1,134 eQTLs of the lead
variants had a MAFyki0x < 0.05. The conditional analysis of the signals in these 1,134 loci,
as described in section 3.2.1 revealed independent secondary and up to quinary association
signals. Low-frequency variants were found across the full spectrum of independent signals
(Fig. 3.3b).

A subset (328) of the eQTLs associated with low frequency variants were based on
the comparison of the transcript levels in monocytes from individuals homozygous for
the major allele and heterozygous individuals. It could be reasoned that the absence of
observations from carriers of the homozygous minor allele increases the risk of observing
a false-positive eQTL, but that this risk diminishes if the variant localises in a functionally
active element. Therefore, in a next analysis step the eQTL variants were integrated with
ENSEMBL information about epigenetic states [129] and data on transcription factor binding
sites from the ENCODE and Roadmap projects [130-132]. This data integration yielded
annotation for 451 of the 1,134 variants and the eQTL variant with the highest 8 value and
lowest p-value of association (2.43702 and 1.94594x10273, respectively) was for UTS2
(Fig. 3.3¢). The lead variant rs59381951 at this locus is localised 49 kb upstream of the TSS
of gene UTS2 and has an epigenetic label as active promoter flanking region in monocytes,
macrophages, neutrophils, CD4+ and CD8+ T lymphocytes and B lymphocytes.

UTS2 encodes a highly conserved oligopeptide of 124 amino acids with a well defined bi-
ological role [134]. It acts through binding its G-protein coupled receptor UTS2R, previously
known as GPR14, which has been extensively investigated for its role as a vasoconstrictor
[135]. According to RefSeq UTS2 is only expressed in brain tissue [134]. Interestingly,
the retrieval of the RNA-seq expression data from the BLUEPRINT project shows wider
expression in haematopoiesis (Fig. 3.4a) and expression data from the Cardiogenics dataset
show detectable levels of UTS2 in monocytes (Fig. 3.4b) and macrophages (Fig. 3.4¢).

3.2.4 Comparison to other large eQTL analyses

Blood, being the most accessible tissue, has been attractive to develop the principle of eQTL
studies. Most eQTL studies on blood have however been performed with RNA obtained from
samples of whole blood. A recent meta-analysis of whole blood studies by the eQTLgen
consortium (Lude Franke, University of Groningen, the Netherlands) included data from
14,000 individuals across 18 original eQTL studies. To inform the design of future eQTL
studies I compared the results from their whole blood eQTL data with the results I obtained
from the merged data for monocytes. This comparison was made possible because the
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Fig. 3.4 UTS?2 transcript levels Fig. 3.4a in purified blood cell types, measured in multiple
individuals (grey dots), red bars are mean log,(FPKM) measures of transcription. Values
below 1 are considered background noise. Taken from BLUEPRINT RNAexpress [133].
Fig. 3.4b Histogram of the median across samples of normalised mean of the binary logarithm
of fluorescence intensity (MFI) of all genes measured in monocytes as part of the Cardiogenics
expression dataset. Red vertical line indicates median normalised MFI of UTS2. Fig. 3.4¢
identical to Fig. 3.4b but displaying Cardiogenics expression data on macrophages.
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eQTLgen consortium generated a reference for the mapping of microarray probes across
several array platforms, including the Illumina Bead Chip Human-Ref-8 v3 and HumanHT-12
v4.0.

To make the two association analyses comparable, both the eQTLgen and the merged
monocyte results were constrained to those eQTLs that were tested in both analyses. The
imputation of genotypes for the two studies was not identical. Therefore variants found to
be associated in either of the two eQTL analyses were linked based on their pair-wise LD
value. Variants with with a pairwise 7> > 0.8 were treated as identical. LD between variants
was calculated using whole-genome sequence data from 7,493 genetically independent
individuals of European ancestry whose DNA samples were sequenced as part of the rare
diseases pilot study for the 100,000 Genomes Project, which was performed by the NIHR
BioResource team at the University of Cambridge. The comparison of the associations
identified by the eQTLgen and the merged monocyte eQTL studies restricted to primary
association signals only and two different criteria were used for the LD-clumps of lead
variants to asses whether there was replication of the eQTL association or not:

Firstly, a genome-wide significance FDR < 0.01 was used in both the detection and the
replication analysis and 92.0% of the eQTLs in the merged monocyte data were found to
replicate in the eQTLgen data (first bar in Fig. 3.5). Secondly, a genome-wide significance
threshold was used in the merged monocyte discovery data and a lenient p-value of 0.05
was used in the eQTLgen data, yielding replication of 97.1% of associations (Third bar
in Fig. 3.5). This more lenient p-value for replication is motivated by the assumption that
once an association has been identified in a discovery experiment then less evidence is
necessary for its replication [87]. These results suggest that almost all eQTLs discovered in
an association study using purified monocytes from 1,480 individuals can also be observed
when using whole-blood eQTL data from 10 times more individuals.

The sample size of the eQTLgen meta-analysis is far greater than the one for the monocyte
dataset reported in this thesis. Therefore, the results of one of the eQTL studies used as
part of eQTLgen (Fehrmann et al. [136], 1,227 individuals) was compared with eQTLs of
purified monocytes from 1,480 individuals. Only results obtained with probes present on the
bead chips of both studies were used and lead variants were clumped with their neighbouring
high-LD variants. Applying a genome wide significance threshold (FDR < 0.01), 65.4% of
the associations found in the whole blood study were also detected in the results obtained
with monocytes. Conversely only 50.9% of the monocyte eQTLs were detected in the whole
blood study at the stringent genome-wide significance level, which increased to 80.7% at a
more lenient threshold of p < 0.05.
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Fig. 3.5 Replication of eQTL results between merged monocyte data (CD14) and eQTLgen
(left panel) and Fehrmann et al. [136] (right panel). The labels on the x-axis are the names
of the replication datasets. Dark bars display the amount of replication, light bars are the
numbers of eQTLs detected for the commonly tested microarray probes. Green bars: the
genome wide significance threshold of FDR < 0.01 was used for replication. Purple bars: a
nominal p-value threshold of 0.05 was used for replication. Brown bars: all probes that were
also associated with any variant in the other dataset are displayed as replicating.
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Overall, this analysis has shown that eQTL results obtained with whole blood RNA are
capable of replicating most of the associations observed by eQTL using RNA from purified
cells. There are several reasons why the whole blood eQTL results are less informative when
used in an integrated fashion such as for GWAS colocalisation studies. Firstly it is unclear
from which cell type the eQTL signal in whole blood arises. Secondly, a subset of eQTLs
exert their effect on transcript levels in different cell types and sometimes with opposite
directionality [87]. These aspects of shared eQTLs between cell types will be discussed in
more detail in the next chapter. An alternative approach to the use of RNA obtained from
whole blood or purified populations of cells is to apply single cell expression data in eQTL
studies [137]. This is a promising approach, as the cell type and cell state can be assessed for
every measured cell individually post hoc. These advantages come with the drawbacks of the
high cost of single cell RNA sequencing and the sparsity of the number of reads obtained per
cell.

3.3 Discussion

In this chapter I have presented a joint analysis of four independent eQTL studies. The
four studies made use of the same bead chip array by Illumina to measure relative RNA
abundance and genotyping results were obtained by Illumina genotyping tests or by whole
genome sequencing at low coverage. The use of these very similar experimental approaches
made the joint analysis possible. To ensure compatibility between the experimental data and
to minimise noise resulting from the batch effects, the expression data was preprocessing
through a single analysis pipeline specifically designed for this study. The 88% concordance
between the original eQTL results from the WTCHG study for monocytes and the results
obtained after the reprocessing of the same raw expression data validated the new analysis
method.

After this quality control, experiment data from all four studies was reprocessed and data
on the same cell type (monocytes, neutrophils, platelets) was combined across studies to
increase the power to detect eQTL signals at variants with lower MAFs.

Indeed, the eQTL results obtained with the aggregated data for monocytes showed more
power compared to the results from the three individual (Cardiogenics, CEDAR, WTCHG)
studies. With increased sample size, additional associations were identified not only with
common variants but also with less frequent ones. This also indicated that thanks to the
unified preprocessing little noise was added while aggregating the data. A total of 15,851
independent eQTLs were identified across the seven cell types. Merging of data for the

same type of cell improved the robustness of the detected associations. It is postulated that
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a considerable portion of the original eQTL variants which did not replicate were likely to
be false positives or associations that were unique to one sample collection, e.g. half of
the participants in the Cardiogenics study had a history of a cardiovascular event before
enrolment [88, 89] and the participants in the WTCHG study had been enrolled over a
very short time period to reduce seasonal variations in the expression levels of a subset of
genes [126]. Altogether, the joint and unified analysis has resulted in a unique resource of
robust eQTL associations for six different types of blood cells and also for ex vivo generated
macrophages. These results are of considerable value for colocalisation studies to map
variants identified by GWAS to their target genes.

Such colocalisation studies can also be performed with eQTL results from whole blood
studies. One of the advantages of whole blood studies over studies with purified cells is that
the former type is simpler to scale and therefore cheaper. Interestingly when using the results
from the recent eQTLgen meta-analysis study which included whole blood expression results
from 14,000 individuals, 92.0% of the associations found in the eQTL study performed were
replicated with the monocytes from 1,480 individuals. This indicates that whole blood eQTL
studies, when large enough, can capture eQTL signals which emanate from a relatively rare
type of leukocytes (monocytes make up 2-10% of whole blood). A distinct disadvantage of
bulk whole blood eQTL studies over those with purified cells remains because of our limited
ability to deconvolute the whole blood effect sizes to the different cell types. A method
has been developed by Westra et al. [138] to estimate the mediating cell type in whole
blood cis-eQTLs. It relies on the abundance estimates of the constituent cell types in whole
blood and gives a p-value of how likely a selected cell type is mediating the whole blood
eQTL. The authors suggest to use results from this method as a supplement to eQTL studies
performed on purified cell types. Its power to detect cell type mediated eQTLs depends
on the abundance of the cell type in whole blood and may require whole blood datasets of
thousands of individuals.

In this chapter I have shown the technical approach used to generate the unified eQTL
analysis and how to relate its results to those obtained by whole blood eQTL studies. The
next chapter will focus on the identification of eQTL signals shared between cell types,
the enrichment of eQTL associated variants in nucleosome depleted elements, the presence
of eQTL variants in long-range promoter interacting elements and colocalisation of eQTL

variants with variants identified by a GWAS for blood cell indices.






Chapter 4

Application of expression quantitative
trait loci

Expression quantitative trait loci (eQTLs) provide information about how genetic background
is involved in a cellular phenotype, and can explain about 31% of expression variance [139].
eQTL results give an insight into genetic control of gene expression, but the gain of knowledge
from direct interpretation of associations is limited. Gene regulation is complex and relies on
several layers of control, and only one of them is genetic background. To help understand
genetic control, I will compare eQTL results across the seven cell types and highlight cell type
specific associations. Next, I will put the eQTL results into bigger context, overlapping them
with genomic regions which are known to be important for gene regulations. Apart from the
direct interpretation, eQTL results have been used as a tool to help improve the understanding
of results from genome-wide association studies (GWAS) by means of colocalisation. I will
perform a colocalisation analysis to explain how a GWAS variant mechanistically exerts
its effect on plateletcrit - a measured blood index derived from a routine full blood count
analysis as recently reported by Astle et al. [45]. Finally, I will draw a link between gene
regulation, three dimensional chromatin structure and gene constraint against coding loss of
function mutations.

4.1 Cell type specificity

Gene expression, as well as the gene-regulatory landscape, can be cell type specific [28].
Some genes are expressed more homogeneously across cell types than others, but some
genes are highly cell type-specific. Gene expression atlases have been created which contain
expression levels of genes across cell types and tissues.
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Since the existence of an eQTL is necessarily linked to the expression of the associated
gene in a cell type, it is expected that a subset of eQTLs are cell type-specific. In efforts
such as GTEx [77] a wide range of tissues were studied. eQTL replication was used to
find patterns of tissue specificity and the inference of genetic pathways. Fairfax et al. [87]
have studied the differences in eQTLs using monocyte and B-cell data and they found cell
type specific cis-eQTLs, as well as switching of effect sizes between cell types. In a later
study, the same authors [112] found similar results when comparing monocytes in different
activation states. In this section, I will identify cell type specific associations, as well as

pleiotropic ones, which replicate across all cell types.

LD-clumping

Before I could compare eQTLs across cell types, it was necessary to ensure that the results in
the different cell types were made comparable. eQTLs are associations between DNA variants
and the expression level of genes. Every independent association signal is summarised by the
strongest associated variant or so-called tag or lead variant (section 3.2.1). Due to the noise of
the input data an association of a gene with variant a detected in cell type A can be the same
association as in cell type B, even if the eQTL results for cell type B give an association with
variant b # a. In those cases, the equality of association signals is estimated by calculating
the pairwise linkage disequilibrium (LD) between a and b. If a and b are in high LD
(r*(a,b) > 0.8) then the association signal in cell types A and B is assumed to be identical.
LD was calculated as the correlation of genetic variants based on whole-genome sequencing
data from 7,493 genetically unrelated individuals from Northern European ancestry. Their
DNA samples were analysed by whole genome sequencing as part of their participation in the
NIHR BioResource - Rare Diseases project (currently unpublished data, Ouwehand, NIHR
BioResource, University of Cambridge, UK). Using this LD-based criterion it was possible
to clump variants together and to make association signals comparable across different types
of blood cells.

Technically, the comparison was performed as follows: in the first iteration all gene-
variant pairs that tag a conditionally independent association signal were collected in every
cell type. These pairs were aggregated across all datasets. Next, association p-values and
effect sizes of all the aforementioned gene-variant pairs were extracted from eQTL results in
all cell types. Not all gene-variant pairs were tested in all cell types, because not all genes are
expressed in all cell types. All the variants that were associated with one gene across all cell
types were clumped by LD as described above to establish replication of association signals.

I then defined replication for an LD clump if one of its variants was associated at genome

wide significance level in at least one cell type (discovery set) and variants in the same clump
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had a minimum nominal p-value <0.05 in the other cell types (replication set). This criterion
was applied across all genome wide significant associations of all cell types to generate a
replication matrix of signals.

In total 15,851 independent eQTL LD-clumps were identified across the seven cell types.
Splitting LD-clumps by replication, the biggest proportion of eQTLs (4,682) was found to
be cell type specific (Fig. 4.1a), but 281 eQTLs replicated in all cell types (rightmost bar
in Fig. 4.1a and orange bar in Fig. 4.1b). Platelets, apart from being the cell type with the
fewest identifiable eQTLs, showed strong dissimilarity to all the other investigated cell types.
This is illustrated in Fig. 4.1b, where the biggest set of eQTLs that platelets share with any
of the cell types is the set of eQTLs that are shared across all cell types. On the other hand
cell types that are closely related in terms of haematopoeitic ontology like monocytes and
macrophages tend to share more eQTLs with each other than with any other cell type.

Using this eQTL replication matrix I created a hierarchical cluster of the seven cell types
using the cosine distance metric (Fig. 4.2). The clustering dendrogram gives a plausible
representation of the haematopoietic tree. This replication result shows the robustness of the

eQTL datasets, which were derived from studies performed at different laboratories.

4.1.1 Effect size across cell types

So far I have investigated eQTL replication in terms of p-values of associations, for biological
interpretation the effect size and directionality of the effect are of interest. Effect size
measures the difference in mean expression levels in the presence of the minor allele. In
other words, the magnitude of the effect indicates by how much the expression is altered by
"adding a minor allele’, and effect directionality describes if carriers of the minor allele on
average have higher or lower expression of a gene, compared to expression levels measured
in individuals lacking the minor allele.

Now, I will compare effect sizes across the seven different cell types. Previous studies
[87] have already shown that effect sizes may differ between cell types and even between
different activation states of the same cell type [112]. I analysed the replication of effect
directionalities in eQTLs that replicate across all seven cell types. Of the 281 eQTLs that
replicate across all cell types (Fig. 4.1b) there were 30 genes whose association did not have
the same effect directionality in all cell types (Fig. 4.3). This difference in effect direction
was not an artefact of technical nature because it was not caused by PEER covariates, nor by
inaccuracies from misalignment of genetic allele order across cell types, nor by expression
data preprocessing. As technical noise was excluded, these observations most likely have
biological cause. Gene expression regulation is a complex process and expression is rarely
controlled by a single locus. The variability of effect magnitude and the change in effect
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Fig. 4.1 eQTL datasets for seven types of blood cells. Fig. 4.1a Cell type specificity of
eQTLs. The number of eQTLs per cell type are on the y axis and the x axis indicates in how
many cell types the respective eQTLs have been replicated. The coloured bars represent the
number of eQTLs per cell type and summation of these numbers across the cell types are
represented by the grey bar. Fig. 4.1b eQTLs shared between cell types. The top panel shows
the number of eQTLs per category on the y axis and the matrix in the bottom panel shows
the different categories of eQTLs based on whether they are shared between different types
of cells or not.
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Fig. 4.2 Recapitulation of the haematopoietic tree by use of the eQTL datasets. Hierarchical
clustering of cell types based on a non-supervised clustering using the eQTL datasets for the
seven types of blood cells.
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Fig. 4.3 Pleiotropic eQTLs with opposite effect direction in different cell types. Displayed
are the eQTL effect sizes (B, [loga(F1)]) (red to blue colour intensity) and directionality
(positive and negative 3 values in red and blue respectively). Cell types and gene names on
horizontal and vertical axis, respectively.
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direction are strong indications of the complex interplay of many factors in gene regulation
and the differences between cell types in how gene transcription is initiated and maintained.
An important molecular mechanism underlying differences in gene transcription detected
by eQTLs is the differential level of binding of the transcription factors at the position of
the lead variants. The different states of the seven cell types is to a large extent determined
by differences in the abundance of key transcription factors which determine cell state
[81, 140]. Therefore I reason that it is highly unlikely that the lead variants of the 281 eQTLs
detected in all seven cell types are occupied by the same composite of transcription factors.
Further experimental studies are warranted to improve the understanding which molecular
mechanisms underlie the shared eQTLs.

The observed sharing or lack of sharing of eQTLs between blood cell types does highlight
the limitations of eQTL data generated with RNA obtained from samples of whole blood.
Such eQTL data is more cost-effect to produce for large sample sizes [138], but signal
deconvolution between a variant and the expression of a gene in a single type of cell is
challenging and the correct estimation of its eQTL effect magnitude is not possible. In
samples of whole blood taken from different individuals the ratio between the cell types
differs and these differences are for a large extent (up to 20%) genetically explained [45].
Additionally, the differences in RNA levels between non-nucleated cells (red cells, platelets)
and the nucleated ones are extensive adding further confounders to the measured effect size
in an whole blood eQTL study.

4.2 eQTLs in regulatory regions

More than 90% of all the lead variants identified by GWAS for common diseases and
medically relevant quantitative traits are localised in the non-coding portion of the genome
[43]. Similarly, eQTL variants are by their nature localised in the intronic or intergenic
space. It has been shown that a subset of eQTL lead variants are localised in nucleosome-
depleted (accessible) regions of the genome as determined by DNAse hypersensitivity assays
[141] or more recently by sequencing assays to identify transposase-accessible chromatin
sites (ATAC-seq). Furthermore, it has been shown that eQTL variants that lie in regulatory
active regions, such as enhancers, are more likely to replicate across studies and hence are
potentially more robust findings [142]. In this section I will discuss the overlap of eQTLs
with accessible elements of nucleosome-depleted chromatin using ATAC-seq data. Gene
expression regulatory factors, such as transcription factors, bind in regions of accessible
chromatin [143]. Therefore, variants in accessible chromatin are potentially of higher

relevance to gene expression regulation. The ATAC-seq data for monocytes, CD4 T-Cells and



4.2 eQTLs in regulatory regions 53

eQTL enrichment in ATACseq peaks

0.5
label
Observed
Randomised I
0.4 4
I 1
= 0.3
@
£
€=
=
=
% 0.2 4
0.1 A
0.0 - T T 1
CD4 T-Cells Monocytes B-Cells

Cell type

Fig. 4.4 Enrichment of eQTL variants in nucleosome depleted regions (accessible chromatin)
of monocytes, CD4 T-Cells, and B-Cells. ATAC-seq data was used to define nucleosome
depleted regions.

B-Cells was generated and preprocessed by the laboratory of Dr Mattia Frontini (Department
of Haematology, University of Cambridge). To determine the extent of overlap between
eQTL variants and accessible chromatin of the matching cell types I determined the level of
enrichment using the GoShifter software (version 0.2) [144].

GoShifter extends the associated eQTL variants by adding their LD-proxies (1> > 0.8)
using 1,000 Genomes data [145] (LD matrices used from BEAGLE package release 2 [146])
and the amount of overlap of the extended set of variants with the epigenetic annotation is
calculated. In order to test for statistical significance, GoShifter randomises the position
of the epigenetic annotation and calculates the overlap for every iteration of randomisation.
For this experiment I used the ATAC-seq data for the corresponding cell types and executed
GoShifter with 1,000 random permutations. I identified significant enrichment (p < 0.001)
for all three cell types (Fig. 4.4).

These results suggest that about 40% of LD-extended eQTLs lie in accessible chromatin
(Fig. 4.4). The results are comparable with the results by Gaffney et al. who observed 40%
overlap between eQTLs and DNAse hypersensitivity sites for lymphoblastoid B cell lines
[141]. There are some plausible reasons why the remaining 60% of eQTL variants do not

overlap with accessible chromatin. Firstly, the genotyping data is collected in coarse manner
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- using genotyping arrays and limited sample sizes affects the correct the identification of
causal variants. Secondly, differences in transcript levels in a fully differentiated cell type
like the neutrophil may reflect gene transcription at precursor or even progenitor state. These
earlier cell types which reside in the bone marrow have a significantly different landscape of
nucleosome depleted elements [28]. Third, eQTL variants may be localised in micro-RNA
sites and the sensitivity of ATAC-seq to detect such sites may be limited. Fourth, layers
of gene regulation may exist outside ATAC-seq elements, which remain to be discovered.
Finally, this analysis relies on the current working model that variants exert their effects
through differential binding of transcription factors, which may be an incomplete model.

In summary I have shown that the vast majority of eQTLs is cell type specific, that
there is considerable sharing of eQTLs between haematopoeitic closely related cell types
(e.g. monocytes and macrophages; CD4 and CD8 T cells). The robustness of the eQTL
data presented here is confirmed by the recapitulation of the haematopoetic tree. Finally, I
obtained evidence that eQTL variants are strongly enriched in nucleosome depleted regions
of the genome. In section 4.4.1 I will present the results of an analyses which explores a

possible link between eQTLs and chromatin conformation.

4.3 Colocalisation with GWAS signals

A decade of GWAS has found more than 50,000 variants associated with the risk of common
diseases and medically relevant quantitative traits [147]. The next big challenge after the iden-
tification of the genetic architecture of many of the common diseases is to determine through
which cells and tissues these variants exert their effect on phenotype. Crucially, this involves
linking the associated variants to gene(s) and molecular pathways. Multiple approaches
are being exploited to functionally annotate the observed associations. Firstly, extensive
genome annotation, such as patterns of cytosine methylation in CpG islands, chromatin
accessibility, modifications of histone proteins and binding sites for transcription factors
have been used to assign function to the non-coding fraction of the genome. Consortium
based international efforts (Encode, Roadmap and BLUEPRINT) [6, 148, 149] have led to
the generation of high resolution reference maps of the functional annotation of the genome
for hundreds of different cell types. Using this data it was shown that GWAS variants in
enhancer regions of the genome explain 19-46% of heritable variation in blood cell traits [45].
Secondly, statistical methods have been developed for the fine-mapping of associated variants
[106, 108, 109, 104, 103, 107] allowing the selection of causal variants from all associated
ones at a locus (see: [150]). Interestingly, some of these fine-mapping methods integrate

functional genome annotations in their inference [105]. A third way to link GWAS associated
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variants to the gene(s) through which they exert their effect is to use colocalisation of GWAS
variants with eQTL associations [73, 72, 75]. Colocalisation identifies statistically significant
similarity between a GWAS association signal and an eQTL association signal. The biologi-
cally causal association can be inferred by linking the different alleles of a trait-associated
variant to differences in expression levels of a gene. Additionally, the colocalisation links
higher or lower levels of mRNA with higher or lower levels of the relevant trait. Linking a
GWAS variant with a gene is the first step in order to map an observed GWAS association to
a molecular pathway.

GWAS Cell Type GWAS trait name eQTL cell type
Platelet Platelet count platelet
Mean platelet volume platelet
Platelet distribution width platelet
Plateletcrit platelet
Myeloid white cell Monocyte count monocyte
Neutrophil count neutrophil
Sum neutrophil eosinophil counts neutrophil
Sum basophil neutrophil counts neutrophil
Neutrophil percentage of granulocytes neutrophil
Myeloid white cell count monocyte, neutrophil, macrophage
Granulocyte percentage of myeloid white cells neutrophil
Lymphoid white cell ~Lymphocyte count CD4, CDS T-cell, B-cell
Compound white cell White blood cell count monocyte, neutrophil, macrophage, CD4, CD8 T-cell, B-cell
Monocyte percentage of white cells monocyte
Neutrophil percentage of white cells neutrophil
Lymphocyte percentage of white cells CD4, CDS T-cell, B-cell

Table 4.1 GWAS blood cell traits selected for colocalisation with eQTLs

I have used the aggregated eQTL dataset to link GWAS variants associated with blood
cell indices [45] to genes. For this analysis I have made use of a recently developed analysis
approach for colocalisation developed by Verena Zuber at the Stegle group at the EMBL-EBI
(Hinxton, UK). This method requires that prior to execution, regions of interest have to be
defined within which colocalisation is being tested. I selected regions where GWAS and
eQTL lead variants were less than 20 kb apart. As a first step of colocalisation, fine-mapping
of the GWAS and the eQTL results was performed individually, using FINEMAP (version
1.1) [109]. FINEMAP is a Bayesian algorithm that calculates, for every tested variant, the
posterior probability of it being causal. It takes combinations of variants into account and can
find multiple independent causal variants, which correspond to conditionally independent
associations. FINEMAP uses summary statistics either from the GWAS or eQTL association
tests and requires a matrix of pairwise LD (correlation) of the tested variants. For this
analysis, I obtained access to the GWAS genotyping data and calculated the correlation of the
tested variants in the eQTL dataset and in the GWAS dataset individually. In order to estimate
the posterior probability correctly, FINEMAP needs estimations of LD from the same set of
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Fig. 4.5 Colocalisation of eQTLs and GWAS signals for blood cell traits. The type of blood
cell trait is coded by colour in the left column. The number of observed colocalisation signals
for a certain trait type are given and this number is also reflected by the colour intensity (for
scale see right column). Grey boxes indicate the absence of colocalisation or that the GWAS
trait was not tested for colocalisation with the eQTLs in the cell type.

samples that was used for the initial association tests. Highly correlated variants (r >0.95 or r
<-0.95) variants yield numerical instabilities in FINEMAP’s calculation, therefore pairwise
highly correlated variant combinations had to be reduced to a single tagging variant. This
was done in a uniform way for eQTL and GWAS data, always selecting the identical tag
variant for one block of high-LD variants, in order to produce comparable results. After
executing FINEMAP on eQTL and on GWAS data, I calculated the joint posterior probability
of colocalisation p join: (SNP;) = peorr.(SNP;) * powas(SNF;). This joint posterior is the
probability of colocalisation for every variant. A positive result (colocalisation) was defined
as pjoint (SNP;) > 0.5.

For the colocalisation, 16 of 36 blood cell traits from the GWAS were selected. The
combinations of eQTL cell types and GWAS traits that were tested against each other were
selected on the basis of the most likely biological relevance (table 4.1).

From those combinations of eQTL cell types and GWAS traits, a set of candidate regions
was selected for colocalisation as follows: a candidate region was defined as a region ranging
from one megabase up- and downstream of an eQTL gene harbouring a GWAS lead variant
within 20 kb of the lead eQTL variant. The joint posterior colocalisation probability was
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calculated for all variants that lie in those candidate regions. Overall, 58 out of the 13,230
eQTL genes were found to be colocalising with one or several of the GWAS traits (Fig. 4.5).
As expected, monocytes (CD14) showed the highest number of colocalisations, because it is
the eQTL dataset derived from the largest number of individuals (table 3.4). Colocalisation
signals were observed for all four monocyte count related traits (Fig. 4.5).

Platelets were the cell type with the second highest number of colocalisations (Fig. 4.5).
There, the highest number of colocalisations was found for mean platelet volume. In the
following section I give an example of one of these colocalisation results in greater detail.

43.1 ABCC4

All biological experiments on ABCC4 described in this section have been performed by Dr.
Tadbir Bariana during her PhD studies.

The lead eQTL variant rs4148436 of the ABCC4 locus in platelets has a minor allele
frequency (MAF) of 0.39 and the effect of size () of this association is 0.644 log,(FI).
The ABCC4 gene is widely transcribed in blood cells (Fig. 4.6), with extremely high levels
in megakaryocytes, platelets and erythroblasts. The transcript encodes a member of the
superfamily of ATP-binding cassette (ABC) transporters. ABCC4 is also a prototype for the
subfamily of ABC transporters known for their role in multi-drug resistance and particularly
resistance for anti-retroviral drugs used for the treatment of infection with HIV [151]. Studies
with human platelets confirmed the high abundance of ABCC4 and it has been suggested that
it plays a role in the transport of cyclic guanosine monophosphate (cGMP) across the platelet
external membrane and possibly the membrane of dense granules [152]. Further studies
suggest also a possible role in the transport of cyclic adenosine monophosphate (cAMP) and
ADP [153]. These results obtained with human platelets have however not been confirmed
in recent studies with platelets from Abcc4 knock-out mice [154, 155]. This discrepancy
between observations made with human platelets versus murine ones is either explained by
the anti-ABCC4 antibodies not being specific [152] or there are differences in the function
of ABCC4 between mice and man.

Interestingly, whole genome sequencing of cases with unexplained bleeding disorders
as part of the NIHR BioResource - Rare Diseases initiative identified a proband (A) to
be a homozygous carrier of a mutation leading to a premature stop codon at residue 743
(p.743fs*2). Pedigree studies showed another affected member (B) to be a homozygous
carrier of the same mutation (Fig. 4.7) and a heterozygous carrier of the mutation (F) without
bleeding. Sequencing of the RNA obtained from the probands’ platelets confirmed reduced
levels of the ABCC4 transcript in affected members (A,B) (p=0.002). The question whether
the bleeding phenotype was entirely explained by the lack of ABCC4 is not answered by this
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Fig. 4.6 ABCC4 transcript levels in purified human blood cell types, measured in multiple
individuals (grey dots), red bars are mean log,(FPKM) measures of transcription. Values
below 1 are considered background noise. Taken from BLUEPRINT RNAexpress [133]
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ABCC4 p.743fs*2 CT>C  */*

** cr/cr CT/CT
P2RY12 W186R A>T AT /

AT A/T A/A

ABCC4 p.743fs*2 CT>C *ICT
P2RY12 W186R A>T A/A

Fig. 4.7 Pedigree chart with carriers of the ABCC4 and P2RY 12 mutations. Individuals
affected by bleeding are indicated by filled circles. The genotype of the ABCC4 variant
is indicated in pink where */* indicates homozygosity for the p.743fs*2 CT>C mutation
causing a premature stop codon, */CT are heterozygous carriers of this mutation and the
reference allele, and CT/CT are homozygous for the reference allele. The genotypes for the
P2RY 12 mutation is displayed in green, where A is the reference allele.

pedigree study because the two affected members also carry a p.Trpl186Arg missense variant
in P2RY 12, the gene encoding one of the two G-protein coupled receptors for ADP.

In addition, pedigree member (C) also carries the P2RY 12 mutation but she has no history
of bleeding indicating that this mutation in isolation is not linked to bleeding. The platelets
from the two affected pedigree members showed significantly increased levels of cAMP (p <
0.0001) and levels were normal in the other studied family members. This observation is
consistent with results obtained with the platelets from Abcc4-/- mice [155]. In summary,
the study in this pedigree suggests that the absence of ABCC4 is associated with bleeding,
but we cannot exclude that the mutation in P2RY 12 is amplifying the function defect.

GWAS for blood cell indices identified variant rs4148441 in the ABCC4 locus as being
associated with platelet count [54] and this observation was replicated in the more recent
GWAS [45]. The latter study had far greater power to detect associations with platelet
count and also included association studies for additional indices (mean platelet volume
(MPV), plateletcrit (platelet count x MPV) and the distribution width of MPV (PDW) in each
individual). This analysis revealed that the effect of the SNP was limited to the count and crit
of platelets. The directionality of the effect was identical for both traits and the size of the
effect was very similar for both traits with 8 values (count: 0.035 standard deviations (SD)
and crit: 0.042 SD).

Altogether, these three observations of an eQTL for ABCC4, an association signal for the
count and crit of platelets and the bleeding phenotype in cases who lack functional ABCC4
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Fig. 4.8 ABCC4 transcript levels in platelets. The normalized gene expression levels are on
the y axis and the results of samples for the three genotype groups for the eQTL lead variant
rs4148436 are shown with the reference and alternate allele being A and G respectively. The
box and whisker plots indicate the average transcript level (horizontal line within box) and its
quartiles (box outline) with the f3 indicated by the blue line). Association p = 3.82256x1078,
effect size = 0.6445 log, (FI).

prompted further detailed studies of the mechanism underlying the associations observed in
the GWAS and eQTL study.

Firstly, in the merged platelet eQTL dataset I observed an association of ABCC4 expres-
sion levels with variant rs4148436, with the minor (G) allele being associated with a higher
level of ABCC4 transcript in platelets compared to the major allele (A) (Fig. 4.8). Secondly,
to better understand the possible molecular mechanism underlying the differences in gene
transcription I overlaid this region with functional annotation data for megakaryocytes, the
precursor cell for platelets from the BLUEPRINT epigenome project [28]. This showed that
the variant localises in a nucleosome depleted element (as indicated by an ATAC-seq signal)
with positive marks for acetylation (ac) at lysine at position 27 (K27) of histone protein
3 (H3) (H3K?27ac) and for monomethylation (me) at K4H3 (H3K4me), which are typical
marks for an enhancer. Third, integration of annotation from binding sites for transcription
factors [16, 156, 54] showed that the variant localises in a binding site for the transcription
factor MEIS1 in megakaryocytes [156]. The chromatin immunoprecipitation combined with
massive parallel sequencing (ChIP-seq) experiments to identify the MEIS1 binding sites
was performed with the megakaryocytic cell line CHRF-288-11 [156]. Close inspection
of the ChIP-seq results obtained with the CHRF cells showed the presence of both alleles
at the position of variant rs4148436, which enabled the assessment of differential binding
of MEISI to either allele (Fig. 4.9). Therefore the original sequencing files were retrieved
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Fig. 4.9 Differential MEIS1 binding of the A and G alleles of variant rs4148436. Screenshot
of a genome browser displaying the reads of the WASP-realigned MEIS1 ChIP-seq data from
Nurnberg et al. [156]. The position of the eQTL lead variant rs4148436 is in between the
vertical dashed lines. Reads carrying the reference (A) allele are in grey and the non-reference
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Fig. 4.10 Colocalisation of the ABCC4 eQTL and GWAS association signal for plateletcrit.
Manhattan plots depict the results from the eQTL (top) and GWAS (bottom) analyses. The
FINEMAP per-SNP posterior probabilities for the eQTL and GWAS results are coded from
blue to red via green and orange. Variants were pruned for linkage disequilibrium (LD)
before the use in FINEMAP - an X indicates the tested tag variant with a posterior probability
> 0.5. p-value of association and genomic positions (in 10 Mb) on vertical and horizontal
axis, respectively

and re-aligned using WASP (version 0.2.2) [157] to correct for alignment biases. After
realignment read counts carrying either allele of the variant were calculated and a ) >-test
showed significant differences in binding of MEISI to the two alleles (p = 2.27x10~7). The
minor (G) allele, which is associated with higher ABCC4 transcript levels yielded lower
binding probability of MEIS1 compared to the major (A) allele. MEIS1 is a homeobox
transcription factor with a well documented and important role in haematopoiesis [158] and
megakaryopoiesis [159]. Altogether, the annotation of the ABCC4 locus showed the eQTL
variant rs4148436 to be the most likely driver of the differential levels of gene transcription,
with reduced binding of MEIS1 being associated with higher ABCC4 transcript levels in
platelets. This observation is compatible with the notion that MEIS1 has a repressive function
at this particular position in the genome.

The aforementioned colocalisation analysis revealed that the lead eQTL variant of ABCC4

(rs4148436) colocalises with the genome-wide significant association of plateletcrit observed
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in the GWAS by Astle et al. (Fig. 4.10). In the calculation, FINEMAP found two independent
associated variants for both the GWAS and the eQTL. The weaker eQTL signal (yellow
cross in the top panel) is the same variant as the stronger GWAS signal (Fig. 4.10: bottom
panel, higher red cross) and vice versa. The joint posterior probability for the lead variant in
eQTLs (rs4148436, top panel, red cross) was p o = 0.73, which indicates colocalisation
(Pjoint > 0.5). Also, the p-value of the association of variant rs4148436 with plateletcrit is
genome-wide significant (5.222x10~!%). From a comparison of the effect directionalities
for the eQTL and in the GWAS associations it can be inferred that individuals with higher
ABCCH4 transcript levels of have lower plateletcrit.

Summary

In this section I have discussed an example where results from multiple association studies
were integrated in order to investigate the regulation of the expression of ABCC4 in megakary-
ocytes and its effects on platelet phenotypes. By using extensive genome annotation data it
could be shown that the lead eQTL variant has high chances of being the causal regulatory
variant explaining the association observed by GWAS for plateletcrit. Additionally, the same
variant causes allele-specific difference in the binding of the homeobox transcription factor
MEIS|1, suggesting that it acts as a repressor of ABCC4 transcription in megakaryocytes
[156]. The observation that the eQTL and GWAS variants in ABCC4 colocalise strongly
suggests that there is a causal relationship between plateletcrit and the levels of ABCC4
transcript present in platelets. The mechanism by which differences in ABCC4 transcript
level regulate plateletcrit needs to be explored and it could be possible that the prothrombotic

function of platelets is also altered by the same lead SNP.

4.4 eQTL and PCHiC

Some of the findings of this section were included in a publication which I co-authored as
shared first author [160].

Promoter-capture HiC (PCHiC) is a technique to identify long-range interactions between
promoters and distant DNA elements. Together with collaborators from the Fraser laboratory
at the Babraham Institute (Cambridge, UK), I have characterised promoter interacting regions
(PIRs) [160], where I have focused on their potential role in gene transcription regulation.

The analysis approach will be reviewed and the results discussed.
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4.4.1 PCHiC and data integration

Prior to any analysis, the PCHiC experimental data had to be re-annotated and prepared.
Briefly, the PCHiC experiment was designed to test the long-range interactions of promoters
with other regions of the genome - promoter interacting regions (PIRs). A critical step of the
PCHIC is the fragmentation of DNA into defined regions (fragments) with the restriction
enzyme HindIII [160]. This resulted in fragments of an average length of 4 kilobases,
thereby defining the resolution of the assay. To achieve high sensitivity for the detection of
PIRs, interacting fragments were enriched by a pull-down step before sequencing using all
annotated promoters (Ensembl v.75) as baits [160]. Pulled-down HindIII fragments and their
interacting elements were sequenced and any fragment interacting with a promoter bait was
called a PIR. The PCHiC experiment was performed with 17 primary haematopoietic cell
types. As part of preprocessing, interactions measured between directly adjacent fragments
were removed from further analysis. This step was necessary to maintain specificity of
interactions because HindlIII digestion may be incomplete due to ineffective restriction. As a
result interactions between a promoter bait and its adjacent 5’ and 3’ fragments cannot be
measured, creating a so-called "blind spot" for interactions around the promoter.

In the initial analyses some annotation inconsistencies were detected in the first version
of the dataset. I therefore re-annotated bait regions with gene names, by overlapping them
with the transcription starting sites (TSS) of genes as defined in Ensembl v.75. Some baits
covered the TSS of multiple genes and were therefore annotated with multiple gene names.

This re-annotation was used in all of the following sections.

4.4.2 eQTLs indicate regulatory function of PIRs

The existence of a three-dimensional interaction (PIR) does not necessarily convey an
expression regulatory function. Identifying eQTL variants in PIRs provides direct evidence
of functionality. The largest portion of eQTLs is localised proximal to the TSS (Fig. 4.12c¢).
The chance of identifying eQTL variants in genomic regions further from the TSS - beyond
the blind spot of PIRs - is therefore limited. Notwithstanding I analysed the presence of
eQTL variants in PCHiC PIRs.

Several analyses were performed.

PIRs as a prior for eQTLs

For a typical eQTL analysis the association test is limited to 1 Mb windows on either side
of the gene body (Fig. 4.11). The PCHiC data allowed to restrict the test to subsections of

the aforementioned window and the inclusion of more distant promoter-interacting elements



4.4 eQTL and PCHiC 65

cis-eQTLs

Gelne

PCHiC-interaction-eQTLs

PIR Bait Gene
“ N /> |
(T I - [ [ 1]

Fig. 4.11 Schema of PCHiC-based eQTL calling. Green areas: regions from which variants
are selected for an association test with the gene highlighted in the respective schema; red
areas: PIRs; transparent red areas: bait fragments; blue areas: gene bodies; bent arrows:
gene TSS. On the top panel the default approach for cis-eQTL tests is displayed - all variants
within 1Mb up- and downstream of the gene body (including the gene body) are tested. On
the bottom panel the PCHiC interaction-based approach is displayed - all variants localising
in PIRs (+=500bp) are tested against the transcript levels of the gene. Proportions of displayed
annotations are not to scale.
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which are localised outside this window. I therefore tested whether PIRs are informative
priors for eQTLs and calculated the enrichment of identifiable eQTLs in PIRs. To achieve
this the typical cis-eQTL testing approach was modified and instead of testing the variants in
a window greater or equal to 2 Mb, only variants localised in the gene-specific PIRs were
used for association testing. The PIRs were extended by 500 bp on either side in order to
capture variants lying just outside the HindIII fragments, accounting for arbitrariness of
the restriction sites of HindIII in the gene regulatory context. Additionally, to allow for a
consistent randomisation procedure (see below) PCHiC interactions further than 1 Mb from
the promoter bait were excluded from the following analysis. The analysis was performed
with cell type-matched interaction and eQTL data and the association test was performed
using a 10% FDR threshold. This analysis procedure identified 899 and 577 eQTLs in PIRs
for monocytes and B-cells, respectively. The lower number of eQTLs for the latter type of
cell reflects the smaller eQTL sample set for B-cells compared with monocytes (n=432 vs
n=283). To determine the significance of these findings the observed number of identifiable
eQTLs was compared to the number of eQTLs obtained from a randomisation of PIRs.

For this analysis a set of random PIRs (rPIRs) were generated using the following analysis
approach:

1. Sample all bait-PIR pairs as prepared for the first association test and shuffle the gene
names of the baits.

2. Remap the bait and its interactions to its newly assigned gene promoter whilst main-

taining distances between the bait and its PIRs.

3. Apply mirroring of the genomic positions of rPIRs around the bait if the newly assigned

gene lies on the opposite strand compared to the original gene

The randomisation was performed 1,000 times and association tests were performed
for every iteration. Enrichment of associations in the observed PCHiC data over rPIRs
was calculated at various distances from the TSS. The results of the analysis (Fig. 4.12a
and Fig. 4.12b) show a significant enrichment of eQTLs in promoter-interacting elements
identified by PCHiC (p < 0.001). The following conclusions can be drawn from this
experiment. First, the portion of eQTLs localised in PIRs is relatively small compared to the
total number of eQTLs for a cell (e.g. the typical analysis showed eQTLs for 3,686 genes in
monocytes and only 899 eQTLs in PIRs were identified). This relative low fraction is because
most eQTL associations are localised in a narrow window around the TSS (Fig. 4.12¢ and
Fig. 4.12d). Because of this proximity of eQTLs to the TSS and the PCHiC blind spot a
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Fig. 4.12 Localisation of eQTL lead variants and their enrichment in promoter interacting
elements (PIRs). Fig. 4.12a and Fig. 4.12b display the enrichment of eQTL in PIRs in
monocytes and B-cells, respectively. Relative enrichment and distance between lead variant
and TSS is displayed on the vertical and horizontal axis, respectively. * indicates significant
enrichment over rPIRs obtained by permutation testing with xp < 0.05; % p < 0.01; *x*xxp <
0.001. Fig. 4.12¢ Distribution of distances from TSS to eQTL lead variant for monocytes (in
orange) and from the bait centre to PIR centre in blue. Fig. 4.12d A zoomed-in version of
Fig. 4.12¢.
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Fig. 4.13 Enrichment of cis-eQTLs in promoter interacting elements using whole blood eQTL
data. * * x indicates significance of enrichment at p < 0.001 for observed over randomized
PIRs as obtained by permutation testing.

large portion of enhancers containing eQTLs cannot be observed. Secondly, the number of
identifiable eQTLs in PIRs reduces rapidly with increasing distance from the TSS.

Overall, the analysis has shown a significant enrichment of eQTLs in PIRs indicating that
a proportion of the long-range promoter-interacting elements are functional.

Enrichment of whole blood eQTLs in PIRs

The results of eQTL enrichment presented above are based on the Wellcome Trust Centre
for Human Genetics (WTCHG) datasets for monocytes and B-cells, which was based on the
analysis of expression and genotyping date of only 432 and 283 individuals, respectively.
The enrichment analysis was repeated with an eQTL meta-analysis dataset generated with
RNA samples obtained from whole blood of individuals [101]. This study comprised data
from 5,311 samples and identified 6,418 eQTLs. There are several explanations for the far
lower number of eQTLs detected in this meta-analysis compared with the results from the
eQTL analysis presented in this thesis (section 3.2.2).

The interaction data was merged across all 17 blood cell types [160] for the analysis of
the whole blood eQTL study. The same PIR randomisation procedure as mentioned above
was applied and an enrichment of eQTLs in PIRs over rPIRs was also observed for the whole
blood eQTL study (Fig. 4.13).
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Examples of eQTLs acting over megabases distances

Having established that there are eQTLs exerting their effects on the expression of genes
which are far from the gene body, I searched for additional illustrative examples of eQTLs
in PIRs which were beyond the arbitrarily chosen 1 Mb window around the gene body. For
this analysis I used the full set of association data instead of the restricted one used for the
enrichment analysis. Amongst many others, I detected two eQTLs localised in PIRs, both of
which exert an effect on the transcription of the same NCOA4 gene (Fig. 4.14); one of the
eQTL variants is 5 Mb upstream of the TSS of NCOAA4. This type of long-distance eQTLs
are not detected in the typical cis-eQTL analysis, and would most probably have been missed
in a trans-eQTL analysis due to their relatively low association strength. Another interesting
example was identified in B-cells where the PIR-localised eQTL variant rs17561058 regulates
the transcript levels of both NDUFAF4 and ZBTB2 (Fig. 4.15). This associated variant lies
at distance greater than 10 Mb from both these genes. The PCHiC interaction data suggests
that the associations with both genes may be in cis but further biological experiments are
required to confirm this assumption.

In conclusion, using PIRs as priors reduces the number of performed eQTL association
tests by reducing the genomic space from which variants are sampled. This in turn reduces
the multiple testing correction that has to be applied to the association p-values. Having
knowledge of these functionally relevant long-range interactions is important to improve the
accuracy by which disease and trait associated variants identified by GWAS are linked to

candidate genes and molecular pathways.

4.4.3 Variation in transcript levels and promoter connectivity

The variation in the transcript levels within the population varies widely between genes. The
associations observed in the typical and PIR-based eQTL analyses explain a part of this
variation. As discussed before, the contribution of eQTL variants in regulatory elements
far from the TSS remain unobserved because of the limitations imposed by the correction
for multiple testing. Furthermore, many trans-acting eQTL variants cannot be identified
because of lack of power for most eQTL studies, which have been performed in relatively
small samples of individuals. To explore other possible parameters regulating the variation

in transcript levels I posed the following questions:

* Is there a correlation between the level of connectivity of a promoter, its interacting

elements, and the variance in transcript levels?
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Fig. 4.14 Two independent eQTL variants exerting an effect on the transcript levels of the
gene NCOA4 in monocytes. Top panel: A schema depicting a 5 Mb element on the long arm
of chromosome 10 from 5’ to 3’, highlighting the eQTL variants rs4948673, rs10821610
and the gene NCOA4. Middle panel: Association between genotypes and NCOA4 transcript
levels in monocytes for eQTL variants rs4948673 (left figure) and rs10821610 (right figure).
The box and whisker plots indicate the transcript levels as function of genotyope; median
transcript level in red, the effect size in green (both in log,(F1I)) and the first to third quartile
as box. Bottom panel: Manhattan plots depicting the two eQTL variants with nominal p
values of association on the vertical axis and chromosome position on the horizontal axis.

The horizontal grey dashed line indicates the significance threshold.
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Fig. 4.15 An eQTL variant exerting an effect over the transcript levels of two genes in B-cells.
Top panel: A schema depicting a 53 Mb element on the long arm of chromosome 6 with
depicted from 5’ to 3’ the eQTL variant rs117561058 and the genes NDUFAF4 and ZBTB2.
Middle panel: Association between genotypes of rs117561058 and transcript levels in B-cells
for NDUFAF4 (left figure) and ZBTB2 (right figure). The box and whisker plots indicate the
transcript levels as function of genotyope; median transcript level in red, the effect size in
green (both in log,(FI)) and the first to third quartile as box. Bottom panel: Manhattan plots
depicting the eQTL signals for NDUFAF4 and ZBTB2 with p value of association on the
vertical axis and chromosome position on the horizontal axis. The horizontal grey dashed
line indicates the significance threshold.
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¢ Is there a correlation between the level of tolerance for loss of function variants and

the variance in transcript levels?

The results of the experiments are presented in section 4.4.3 and section 4.5.

Before testing the relationships, gene expression variance data had to be preprocessed.
Variance of gene expression across samples is confounded with the mean gene expression
level (mean-bias, Fig. 4.16a). This bias is particularly strong for genes with low expression
values compared to the variance at higher expression levels. Three approaches were reviewed
to reduce mean-bias and the most promising was selected by visually comparing the variance
after data preprocessing with the uncorrected variance. The coefficient of variation and a
normalisation by lowess regression were computed with two different parameter settings. An
implementation of the lowess regression in the statsmodels python package (version 0.8.0)
[161] was used with a fraction parameter of 0.1, indicating that 10% of the dataset was used
to fit the model. The mean-bias in the variance data was reduced by calculating the residual
after the lowess regression (Fig. 4.16b). In spite of the normalisation a mean-bias remained
but the effect of the mean expression on the bulk of the expression variance was successfully
reduced.

The number of elements interacting with promoters varies (Fig. 4.17). Less than 37%
of promoters have more than 10 interacting elements. Inspection of the PCHiC interactions
for the ABCC4 promoter shows 54 and 34 interactions in megakaryocytes and erythroblasts,
respectively but the number of interactions is distinctively lower in other myeloid and
in lymphoid cells. Using this interaction data the normalised gene expression variance
was tested for correlation with the number of interactions with gene promoters under the
assumption that the variance of transcript levels was inversely correlated with the number of
promoter interactions. The number of PIRs (interactions) per gene was calculated from the
PCHIC data. The number of interactions was not found to be correlated with the normalised
expression variance data (Fig. 4.18) (r=0.006904).

eQTL effect size and promoter connectivity

An alternative approach to explore whether promoter connectivity influences gene transcrip-
tion is to consider the effect sizes that were calculated for the eQTLs. In contrast to the
expression variance, the magnitude of the effect () is an indicator of the genetically explain-
able variation of gene expression. Therefore, higher  values indicate that the expression of a
gene is modulated more strongly by a cis-acting eQTL variant. When testing the correlation
between the 3 values and the number of PIRs per gene no apparent correlation was observed

for the dataset generated for monocytes.
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Fig. 4.16 Normalisation of estimated gene transcript levels by lowess regression. Fig. 4.16b
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Summary

In summary the variance in expression levels is not correlated with the number of connections
of the promoters with their interacting elements. There are several possible explanations
for this lack of correlation. Firstly, not all interactions are observed because of the blind
spot of the PCHiC experiment and there is therefore an underestimation of the number of
interactions. Secondly, the level of promoter connectivity may be an important factor for
the spatiotemporal regulation of expressing but has no bearing over the levels of variance.
Nevertheless, I have observed eQTLs in promoter interacting elements validating the function
of hundreds of promoter interacting elements, thereby confirming their role in gene regulation.
Further studies are now required to better define the portion of nucleosome-depleted elements

which are functional.

4.5 Gene constraint scores and transcript variant levels

A loss of function (LoF) variant (e.g. premature stop codon, alternative splice variant) on
one allele is tolerated for a large portion of genes. This was exemplified by the sequencing of
individuals with a high level of consanguinity in which 1,317 genes with LoFs on both alleles
were identified [162]. At the other end of the spectrum are genes which do not tolerate single
alleles of LoF variants because of their detrimental effect on an individual’s fitness and / or
ability to reproduce. The sequencing of the coding fraction or so called exome in more then
60 thousand individuals has provided an opportunity to calculate a score of LoF intolerance
of thousands of genes longer than 300 amino acids [163]. The pLI score ranges between
0 and 1 with many transcription factors having a high score (FLI1, 0.82; GATA1, 0.84;
MEISI, 0.99; TALI, 0.82) and genes reviewed in this chapter showing a range of pLI values
(ABCC4, 0.00; NCOA4, 0.01; NDUFAF4, 0.48; ZBTB2, 0.98). The pLI score is of great
value when labelling high impact rare coding variants with pathogenicity level information,
e.g. a premature stop codon on one allele in a gene with a high pLI score (e.g. GATA1) is
more likely to cause pathology compared to a gene with a low value (e.g. ABCC4).

Genes with high pLI values are protected from acquiring LoF mutations and are under
negative selection (purifying selection) to remove variants introduced as a consequence of
naturally occurring variation. It is therefore reasonable to postulate that genes with a high
pLI have a lower variance of transcript levels than genes with a low pLI.
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4.5.1 The pLI score

There is a correlation between the pLI score and the length of the transcript [163]. The
distribution of pLI scores was plotted against gene length, showing that for short genes the
pLI value does not reach probabilities of 1.0 (Fig. 4.19, upper panel). It is not plausible that
all short genes have low pLlI scores (Fig. 4.19, lower panel) hence the correlation analysis
between pLI scores and variation in transcript levels was limited to genes with a canonical
transcript length greater than 1 kb. It is noteworthy that due to the calculation of the pLI score
genes with longer transcripts tend to have pLI values at either of the extremes (Fig.Fig. 4.19,

upper panel) compared to genes with shorter transcripts.

4.5.2 eQTL effect size and pLI

Interestingly, an analysis using GTEx [77] eQTL data by Lek et al. showed that there is
an enrichment of eQTLs in genes with a low pLI score and likewise a depletion of eQTLs
in genes with high pLI scores (Fig. 3d in [163]). In a further analysis I explored whether
the effect sizes of eQTL associations were correlated with pLI scores. The analysis was
expanded from the binary question of association or no association to whether the order of
pLI scores was related to the order of eQTL effect magnitudes. The results of this analysis
using data from seven types of blood cells are shown in Fig. 4.20. For all cell types a negative
correlation between eQTL effect magnitudes and the pLI scores were observed. The evidence
of this inverse correlation was strongest for the monocyte eQTL dataset which was based on
the largest number of individuals. The result from this analysis is in concordance with the
analysis by Lek et al. using the GTEx data [163]. In a final step an analysis was performed
on the correlation between normalised gene expression variance data (section 4.4.3) and the
pLI score and no association was detected.

4.5.3 Summary

In agreement with Lek et al. [163], I observed a relationship between eQTLs and the
probability of LoF intolerance. I extended their analysis by showing that the order of eQTL
effect magnitudes is negatively correlated with the order of pLI values. From this observation
I conclude that genes which are more tolerant for LoF variants tend to have higher eQTL
effect sizes across a wide range of common and low-frequency eQTL variants (any variant
with MAF > 1%). The observed correlations for the different types of cells between effect
size and pLI value is mainly driven by genes with pLI scores close to 0 or 1 (Fig. 3.16a). 1
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Fig. 4.20 Kernel density estimation plots of the correlation between ranks of the eQTL
absolute effect sizes and the ranks of the pLI score. The effect size [loga(FI)] and pLI values
are on the vertical and horizontal axis, respectively. Negative correlations are observed for all
seven types of blood cells (panels a-g) and the correlation values (r) and p-values are given
in brackets.
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did not find a consistent relationship between pLI values and normalised gene expression

variance for the different cell types.

4.6 Discussion

In this chapter I have annotated, interpreted and applied eQTL results from Chapter chapter 3.
I have shown that by using eQTL data of seven different types of blood cells the process of
haematopoietic lineage commitment can be recapitulated. This observation is compatible
with the notion that a large portion of the eQTLs are localised in cell type specific regulatory
elements and only exert their effect in a single type of cell. In contrast I have also highlighted
the existence of shared eQTLs exerting their effect across different types of blood cells. It has
previously been shown that the effect direction can switch between cell types by comparing
the eQTL data from monocytes and B-cells [87]. I replicated and expanded on these findings
by showing a larger set of eQTLs where the association of the same variant and the same
gene had opposite effect directions in different cell types.

eQTLs are empirically identified regulatory variants. Given the current understanding of
gene regulation one would expect them to localise in regions, that are biologically marked
as gene regulatory important, such as accessible chromatin, enhancers and transcription
factor binding. I observed a significant enrichment of eQTL variants in regions of accessible
chromatin and after an extension of the lead variants with their LD-proxies approximately
40% of eQTLs mapped to a nucleosome-depleted region identified by ATAC-seq. This
observation is corroborating earlier findings [141]. The mechanisms by which the remaining
eQTL variants affect gene regulation and transcription requires further research. Possible
areas of interest are the role of methylation of CpG islands, micro-RNAs and the possible
effects of haplotypes on 3-dimensional chromatin configuration. It may also be possible that
there is a lack of sensitivity of ATAC-seq and similar methods like DNasel hypersensitivity
profiling in identifying nucleosome-depleted elements.

Independently of how a variant modulates gene expression, eQTL data can be used as
a means to aid the functional annotation of DNA variants found by GWAS to by using
colocalisation. Thousands of such variants have been identified since the completion of
the first comprehensive GWAS study in 2007 [44]. Most of these variants (> 90%) are
localized in the non-coding space and establishing a reliable link between variants and genes
is critically important for functional follow-up studies. eQTL variants are unequivocally
linked to a gene, or sometimes more than one gene. Colocalisation of eQTL and GWAS
variants is therefore an effective approach to functionally annotate GWAS variants. By

applying a colocalisation analysis, I successfully linked 60 of 2,069 variants identified in
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a recent GWAS study for blood indices [45] to genes. One of these colocalisation signals
occurred at the ABCC4 locus, where the plateletcrit associated variant rs4148441 colocalises
with different levels of the ABCC4 transcript in platelets. These differences in transcript level
were correlated with different levels of MEIS1 binding at the regulatory element in which
the lead eQTL variant was localised. The allele of variant rs4148436 with a lower level of
signal in the ChIP-seq experiment for MEIS1 binding was associated with higher ABCC4
transcript levels, possibly indicating of MEIS1 having a repressive role at this position [156].
The observation of a colocalisation of the GWAS and eQTL variant confirms the assumption
from studies with human and murine platelets that the transporter ABCC4 plays an important
role in platelet biology.

In recent years it has become possible to query long range interactions between different
regions of the genome. Using the specialised PCHiC technique the interactions of promoters
with distant elements were determined in 17 blood cell types. To assess the regulatory
importance of promoter interacting regions (PIRs), I used eQTL data to show a significant
enrichment of regulatory variants in PIRs [160]. I showed that it is possible to use an
alternative definition of cis-eQTLs, where instead of defining proximity using linear distance
between a gene’s TSS and a variant, PIRs were used. Associations that putatively act in cis,
spanning up to 10 Mb between the eQTL variant and TSS, could be identified. In addition
to having identified a large number of the long-range eQTLs, this finding also validates the
function of hundreds of PIRs. The question whether associations found within PIRs are truly
cis acting - exert their effect directly on the expression of a gene - can only be answered by
additional biological experiments.

Finally, I used the effect size of eQTL associations as a proxy for the relative tightness'
of the regulation of gene transcription and also related it to the gene’s probability of LoF
intolerance (pLI) [163]]. A high impact coding mutation present on a single allele of a
gene with a high pLI value is more likely to lead to changes in phenotype if compared with
similar events in genes with a low pLI. The presence of such mutational events present
on a single allele of genes encoding transcription factors (ETV6, FLI1, GATA1, GATA2,
MECOM, RUNX1) are associated with abnormal haematopoiesis. The observed inverse
correlation between pLI values and the eQTL effect magnitudes for all cell types and the
relative depletion of eQTLs from this category of loci with high pLI scores corroborates the
notion that LoF mutations on both alleles are generally incompatible with viability of the
organism. The results from the analysis presented here extend on the observation by Lek et
al. [163].

'Phenomenologically, tightly controlled genes are regulated to have one level of expression, allowing little
variation [164]
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Overall, the findings presented in this chapter show the wide utility of eQTL datasets
obtained with purified populations of blood cells. I illustrated the utility by several example
experiments and I have made the datasets available to others to perform colocalisation studies
with variants identified in GWAS for cardiovascular and other diseases.






Chapter 5

Genetic variant effect prediction using
deep learning

The software presented in this chapter was developed in collaboration with Ziga Avsec, PhD
student in the Gagneur group at the Technical University of Munich, Germany. It is published
as a pre-print, which I co-authored as shared first author [165]. Throughout the chapter I
will highlight which sections were developed by whom to clarify my contributions.

In this chapter I will present Kipoi. This software has been designed to facilitate sharing
and re-use of trained machine learning models in genomics. I will motive its development
and focus on explaining parts of the software that I implemented, such as the effect estimation
of DNA variants. Additionally, I will describe tools and features I have implemented to

visualise datasets using machine learning models.

5.1 Deep learning in genomics

Technological advances in DNA sequencing and associated high-throughput assays have
catalysed the generation of large scale genomic and molecular profiling studies. The flood of
data has created the need for powerful computational techniques that can capture complex
relationships in high-dimensional data. Predictive statistical and machine learning models
are increasingly developed and applied to genomic data.

In statistics and machine learning a wide range of techniques and approaches have been
developed to model data. A model class that has recently gained considerable attention
is the neural network. It gained popularity in fields like image- and speech-recognition
due to its plasticity in modelling data, because of its capabilities to capture non-linear

relationships. In genomics the first examples of neural networks have been published starting
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from 2001 classifying cancers based on gene expression profiles[166—170]. Following from
these early pioneering contributions, a number of lessons have been learned and model
architecture as well as training data selection have been optimised. State-of-the-art models
can very successfully predict transcription factor binding, chromatin accessibility, RNA
splicing efficiency [171-175], and a wide range of other molecular traits from inputs such as
DNA sequence. These models are trained for example on transcription factor binding data
produced from ChIP-seq experiments that large international projects such as ENCODE [6]
have generated.

In the training phase the model learns a hierarchical representation of the training data.
In the case of a model for transcription factor binding, DNA sequence motifs are learned
together with how combinations thereof control the binding probability of a transcription
factor. Such trained models can therefore be regarded as a compressed representation of the
information contained in the training data. Once trained, the models can be used to make
predictions. In other words the information extracted from the training dataset is transferred
and applied to new, potentially unseen data. Trained models therefore hold the promise
to allow for probing regulatory dependencies in silico, which among other applications
enables interpreting functional variation in individual genomes. Due to these properties
and capabilities of trained predictive models, their availability and sharing is beneficial to
researchers and users.

Apart from making predictions such predictive models can be used to estimate the
importance of subsets of their input as well as the effect of perturbations of the input. For
DNA sequence-based models this enables the effect prediction of genetic variants on the
specific model task - for example transcription factor binding. For a model to predict variant
effect estimates it is not necessary that the query variant was seen in the training data - it
infers the predictions from similar training sequences. Leveraging this aspect predictive
models can be turned into tools for genetic variant annotation, integrating data from various

experiments on different molecular profiles.

5.1.1 Existing model zoos

Despite the importance of trained predictive models, it is surprisingly difficult to share and
exchange models effectively. Existing approaches to sharing models after publication are
diverse, scattering models in author’s websites, code repositories or other sources, rather
than collecting all published models in one common repository. This makes it hard to find,
explore, adapt, and to correctly install existing models. Currently, model repositories (model
zoos) have been set up, but they are mostly specific to the technical modelling framework

and programming language the model was implemented in. An overview of some popular
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model zoos is given in table 5.1. All these repositories offer different sets of features, but in
their common denominator they are all online storages of models without measures to ensure

the model’s functionality.

Name Description Bioinformatics models URL

ModelZoo Multiple frameworks No https://modelzoo.co/
No standardised model download
No standardised data processing

Tensorflow model zoo Restricted to Tensorflow models ~ No https://github.com/tensorflow/models
No standardised model download
No standardised data processing

Caffe model zoo Restricted to Caffe models No http://caffe berkeleyvision.org/model_zoo.html
Standardised model download
No standardised data processing

Keras model zoo Restricted to Keras models No https://github.com/fchollet/deep-learning-models
Standardised model download
Standardised data processing

Table 5.1 The biggest existing model repositories (model zoos).

An alternative approach the above is OpenML (https://docs.openml.org/), where datasets
and models are shared on an online platform. Machine learning pipelines can be designed
and executed, which simplifies reproducibility of results and collaborations. Calculations
are either executed on the OpenML server centrally or locally. OpenML requires data to
be in tabular format so that it can directly be applied to pipelines and models. This has
the disadvantage that raw data has to be processed prior to data submission, obscuring data
preprocessing and complicating the application of OpenML functionality on user data.

All of the approaches above improve the availability of models and OpenML in particular
improves reproducibility, but none of them can setup the required software dependencies
or simplify and help with data preprocessing or model execution. This greatly hampers
researchers from using published models on their own data. Most machine learning models
require a numerical data matrix as input which has to be generated from diverse file formats.
Given the range of file types in bioinformatics and the different ways to interpret them,
preprocessing of genomics data is a more complex task than preprocessing in popular fields
of machine learning, such as image recognition. Therefore, the availability of model-specific
data preprocessing is critical for the functionality and ease of use of the model. There
are several approaches to help with the interaction between bioinformatic data and deep
learning such as dragoNN [176] and concise [177], but both are limited to one particular
deep learning framework and are mainly designed to help training neural networks rather
than using existing, trained ones.

Training and use of deep learning models is technically challenging due to the required
computational power. For practical reasons, these calculations are commonly performed in

graphical processing units (GPUs). Their access and use is controlled by specialised software
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libraries, which are not readily available in current operating systems. In order to simplify
and abstract the technicalities, many frameworks have independently been developed and
are incompatible with each other: Tensorflow [178], PyTorch [179], Theano [178], CNTK
[180], etc. Additionally, these frameworks are heavily under development so that models,
which are created using one version of the framework cannot be used in combination with a
new software version that is released only a few months later. To ensure functionality and
accessibility of models, it is therefore necessary to track the precise software requirements for
every model individually. None of the existing model zoos implement strategies or standards

for software dependency management, data preprocessing or automatic testing of models.

5.2 Kipoi - model zoo for genomics

To address the need of a platform for sharing trained models, that is capable of handling
software dependencies of models as well as data preprocessing, Ziga Avsec and I have
designed Kipoi. The name Kipoi, greek for "gardens", indicates our aim to integrate a wide
range of models and to help the enhancement ("growing") of existing models in Kipoi. Kipoi
is able to address the needs of genomics and at the same time also defines an application
programming interface (API), that enables use of all models, irrespective of their software
framework or programming language, with the same set of commands. Additionally, Kipoi
offers predefined functionality for the most common deep learning frameworks - Keras [181],
Tensorflow [178], and PyTorch [179] - which facilitates the contribution of those models to
the Kipoi model zoo. Based on Kipoi’s design, we defined standards for sharing of trained
models. At the same time, models in Kipoi are not limited to deep learning or to any deep
learning framework. At the time of writing the model zoo already contains over 2,000 trained
genomics models.

Kipoi is a collaborative effort, including Ziga Avsec and me as the main contributors.
Fruitful discussions on the software design and feasibility tests were performed with the help
of Johnny Isreali, Nancy Xu, and Avanti Shrikumar from Prof. Anshul Kundaje’s group
at Stanford University, USA and Jun Cheng from Prof. Julien Gagneur’s group at the TU
Munich, Germany. Ziga Avsec implemented the core Kipoi API, model management, and
automated testing. I implemented genetic variant effect prediction and model interpretation

functionality, all of which will be discussed in detail in the following sections.
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Fig. 5.1 Graphical abstract of the design of Kipoi. A Kipoi model consists in a data-loader
and the core model. Kipoi models are stored in a repository (model zoo) and their execution
is tested nightly. Models in the model zoo can be used for predicting on custom data, to
score variants, to extract feature importance, to retrain and transfer models, and to build new
models.

5.2.1 Design and implementation

The three main conceptual elements in Kipoi are: the Kipoi model, the repository (model
z00) and the application programming interface (API) (Fig. 5.1).

Kipoi model

In a trade-off between generality and requirements of a powerful API, we have decided to
split Kipoi models into a data-loader and a core model. The data-loader and the core model
have one configuration file each that captures software dependencies, a basic description,
and a specification of input/output-properties. All data regarding each Kipoi model has to
physically reside in one directory.

Data-loader The data-loader is a piece of code written by the model contributor, which
preprocesses bioinformatics input data. In the most generic form it is a python function or
class that takes input parameters from the user, which may be file paths or alphanumerical
values. The output is a python dictionary containing model input data (a numpy [182] array)
and additional meta-data. All objects contained in the dictionary may only be instances of a
python list, dictionary, numpy array, or base datatype (string, integer, float, etc.). This output
is required by the Kipoi API to have a standardised interface between all data-loaders and all
models. Furthermore, the python dictionary produced by the data-loader has to contain the
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inputs value which contains the model input data and can directly be passed to the model’s
predict_on_batch function.

To facilitate the implementation of data-loaders, all the preprocessing can be done with
any software available on the coda or pip package managers. To comply with the Kipoi API

they can then be wrapped in a python code by the model contributor.

Core model The Kipoi API at its bare minimum is designed to handle software require-
ments of models and to generate model predictions. The core model is a python class which
encapsulates the original model as it is defined in the respective machine learning framework.
The python class is required to have one function: predict_on_batch, which takes one
argument and returns model predictions. The model class may have additional functions
for intermediate layer activation extraction and for gradient calculation, as mentioned in
section 5.2.2.

If the model is written in the frameworks Keras [181], PyTorch [179], Tensorflow [178],
or scikit-learn [183], then the respective default class in Kipoi can be used for the integration
of the model. Otherwise, the model contributor has to write a python class that complies with
the definitions within Kipoi. If the model is not written in python or in a python-compatible

framework then the model can be integrated by writing a wrapper class in python.

Kipoi model zoo

The repository (Kipoi model zoo), implemented by Ziga Avsec, contains Kipoi models. All
models in the zoo are tested nightly to ensure their functionality and the correctness of the
software dependencies. Nightly tests are preformed at midnight according to the central
european timezone to ensure a fixed testing interval of 24 hours. Kipoi models are versioned,
hence updates of models (their configuration, data-loader, or the core model) are tracked and
users can choose to use one specific version to ensure reproducibility.

The Kipoi model zoo relies on git and gitlfs for versioning and storing models.

The available models can either be listed using the Kipoi API or using the website:

https://www.kipoi.org.

Kipoi API

The Kipoi API, which Ziga Avsec has implemented, unifies commands across frameworks
to simplify the interchangeable execution of models as will be discussed in section 5.2.2.
Furthermore, it enables automatic download and installation, testing and execution of models

in the model zoo. The automated software setup relies on the package managers conda
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and pip. Kipoi creates a new conda virtual environment for every model, which makes it
possible to install software in the exact version required by one model, without interfering
with previous installations of software. The new environment is then set up as specified in

the data-loader and core model configuration files.

Model testing

To ensure reproducibility and functionality, every Kipoi model comes with an example
(toy) dataset. This dataset is used for testing the model and data-loader functionality and
compatibility. For the test itself Kipoi attempts to generate model predictions using the toy
data. If this succeeds, the model passes the tests. If any warnings or errors occur in the
process then the test has failed. The model zoo maintainers are informed which models have
failed the tests, so that the original model contributors can be contacted. It is the contributor’s
responsibility to maintain a model’s functionality. If the contributor refuses to do so, the
model zoo maintainers may attempt to solve the problem themselves, but if that fails the
z0o maintainers remove the model from the list of accessible models. Previous functional
versions of the model remain accessible.

The model tests are executed for all models in an automated way, which also asserts that
model and data-loader dependencies are correctly defined. Therefore, for every model a new
empty conda environment is generated, the dependencies are installed and the test prediction
is performed. If all passes, then the model has passed the automated test. Model testing and

its automatisation was implemented by Ziga Avsec.

5.2.2 Usage

The application of machine learning models on data is a highly unified process using Kipoi.
Given conda, git and gitlfs are installed and set up, Kipoi creates the new model environment
using the command kipoi env create <ModelName>, where <ModelName> is replaced
the name of the requested model. Once the environment has been created it has to be
activated prior to use by source activate <ModelEnvironmentName>. After activating

the environment, the model can be used from the python, R, or command-line interface.

Model prediction

Leveraging our API design, there is one single command (kipoi predict <ModelName>)
to execute prediction of any model on custom data. A user therefore only has to familiarise
themselves once with the syntax of Kipoi and can then use all models in the same way,

irrespective of the model’s programming language or framework. The only argument of
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kipoi predict that has to be adapted for every model, apart from the model name, is the
set of arguments that are passed on to the data-loader (the -dataloader_kwargs argument).

Data-loaders are per definition model-specific. As they preprocess data and convert it
to a format that is compatible with the model, all the input files and parameters necessary
for model prediction have to be passed on to the data-loader. For example, the DeepSEA
model [172] predicts epigenetic features from DNA sequence. This DNA sequence could
potentially come from any source, but in order to cover the main use-cases the data-loader
was designed to use a combination of standard bioinformatics file formats: one .fasta file
and one .bed file. The .fasta file may contain the sequence data from a reference genome
and the .bed file would then contain the definition of query regions within the sequences
defined in the . fasta file. With this combination of the two files, the data-loader can extract
requested DNA sequences from the .fasta file and generate python objects that can be
used directly for model execution. The data-loader is provided by the model contributor and
should aim to make it possible to execute the model with standard bioinformatics file formats
in a straightforward way. The consecutive execution of data-loader and model are all handled
in the background by Kipoi.

The output from the model prediction can either be saved to a text or a hdf5 file in a
standardised format, or, if the python or R API are used, the returned data object can be

accessed directly.

Intermediate layer activation

For neural networks it is possible to evaluate the internal state of the model at prediction
time. This can be used as a tool to open the black box (see section 5.4) in order to see how
the model reacts to input and how predictions are calculated. For example in convolutional
neural networks that use DNA sequence as an input, the first layer acts as a motif detector,
which can be visualised by extracting the activation states of that layer [171].

Technically, extracting layer activation works differently in every framework and at least
basic knowledge of the respective framework is required to do so. For Kipoi, I have integrated
functionality to extract the activation state of any layer in all deep learning frameworks that
are supported out-of-the-box: Keras [181], PyTorch [179] and Tensorflow [178]. If the model
contributor uses a different framework then they would also have to implement this function
using the respective framework. Giving the user simplified accessibility to intermediate layer
activation helps understanding the specific model. It is also one of the basic tools for quality
control for the trained models.
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Gradient calculation

In neural network frameworks, the calculation of gradients of the output with respect to the
input is one of the core features. It is used to train the model by gradient descent, updating the
model weights in a way that minimises the defined loss function (see section 1.4.1). During
training, the gradient is therefore informative for the model how its parameters have to be
adjusted to improve its predictions (by defining the direction and strength of corrections in
the parameter space). The visualisation of gradients with respect to model input has also
proven to be a powerful tool to highlight influential regions of the input (see section 5.4). It
can therefore be informative for the user to access this information in order to interpret their
data with a given trained model. An example is given in section 5.4.

Despite gradient calculation being a core element of deep learning frameworks, it is often
complicated to find documentation on how to perform the calculation explicitly and in-depth
knowledge of the framework is required. To facilitate this further, I have implemented a
consistent way to perform gradient calculation using three popular deep learning frameworks:
Keras [181], PyTorch [179] and Tensorflow [178]. The unified command to calculate
gradients is kipoi grad <ModelName>, which is the same for all three frameworks and
resembles the structure of the kipoi predict <ModelName> command. The output can
either be saved to a text or a hdf5 file, or, if the python or R API are used, the returned data
object can be accessed directly. Availability of this universal command greatly facilitates
advanced model and data visualisation, which would otherwise only be available for machine

learning developers.

5.2.3 Contributing models

Kipoi’s functionality relies on the standardised way of model contribution. Once a new
machine learning model of any kind has been developed, it can be integrated into the Kipoi
model zoo. All software required to load the model and to execute the data-loader has to
be (made) available via the package managers conda or pip. We have defined configuration
files that list all the software dependencies including versions and other vital information for
Kipoi.

The requirements in order to contribute a model are:

* Make sure that all software required to load the model and to execute the data-loader

is available via the package managers conda or pip
* Write the model and data-loader configuration files

e Write the data-loader
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* If the modelling framework is not supported out of the box: write a python model class
» Supply a small sample dataset which can be used as a toy example and for testing
* Make sure the model is fully functional and produces correct results at all times

Great care has to be taken that all configuration files are correct. We have therefore
equipped Kipoi with model testing functionality, which can be used to verify the successful
setup and execution of the data-loader and the model. Before a model can be added to the
model zoo it has to successfully pass both tests. We recommend that the model contributor
performs these tests prior to submission, to ensure functionality, integrity and avoid delays in
accepting the model in the zoo.

Once the model is ready for submission, the default approach for adding new data to
git repositories has to be followed: the model repository https://github.com/kipoi/models/
has to be forked using git. Then the new model has to be copied into the forked repository.
Finally, the new model can be added and a pull request (i.e.: merging of git repositories or
branches) to the original Kipoi model repository can be made. The pull request will inform
all maintainers of the repository about the attempt to add the new model. After review by
us maintainers either changes to the model may be requested or we accept the pull request.

After accepting, the new model is part of the Kipoi model zoo.

5.3 Genetic variant effect prediction

Currently, a variety of models are trained to predict various molecular measurements of the
cell [171-175, 184] purely based on DNA sequence. For models that have DNA sequence
as one of their inputs it is possible to predict the effect of DNA variants on the task of a
model. For example, assuming a model is trained to predict transcription factor binding
from DNA sequence, it is then possible to predict the effect of DNA variants on the binding
of the respective transcription factor with that model. One approach to do so, in-silico
mutagenesis (ISM), produces model predictions twice, once using DNA input sequence
carrying the reference allele, once using the mutated DNA sequence carrying the alternative
allele. Differences between the two sets of model predictions are then contrasted and scored.
The result is the estimated variant effect. This approach was used by Alipanahi et al. [171]
and Zhou et al. [172] in slight variations of the scoring functions. Here I implemented a
generalised way to predict ISM-based variant effect scores for any DNA-sequence-based
model. To enable a model for variant effect prediction, only the model configuration files

have to be updated and no extra implementation time from the model contributor is required.


https://github.com/kipoi/models/
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5.3.1 In-silico mutagenesis

In-silico mutagenesis (ISM) is a perturbation-based approach for variant effect prediction.
It perturbs the model input and for every perturbation, model predictions are calculated.
Differences of the model output with respect to the input perturbations are therefore used to
estimate effect of the perturbation. Prior to calculation, ISM selects a region of the genome
containing the position of the variant of interest, typically the region is centred on the variant.
The perturbation is then performed by replacing the reference allele with the alternative
allele. It is therefore important to distinguish between single nucleotide variants (SNV's)
and insertions and deletions (indels). Perturbation for SNVs are base substitutions in the
input DNA sequence. Indels, per definition, alter the sequence length. This has different
implications for the implementation, which I will discuss in the next section.

Contrasting predictions from reference and alternative sequences can be done in various
ways: the difference between model outputs, the difference of the log-odds of the model
outputs, or combinations thereof can be calculated. ISM predicts the effect of a variant on
the model task. If a model, for example, predicts the binding probability of one transcription
factor to a given DNA sequence, then the most appropriate way to contrast predictions is by
calculating the difference of the log-odds of the model predictions. The result will then be
informative of the effect of the variant on the binding of the transcription factor for which
the model was trained. Various different ways of contrasting ISM predictions were used by
Alipanahi et al. [171] and Zhou et al. [172] and are available in Kipoi.

5.3.2 Implementation

Despite its simplicity, not all DNA-sequence based models are equipped with ISM effect
estimation, as it is the case for MaxEntScan, HAL, and labranchor [184, 174, 175]. The
implementation time for the algorithm as well as the user interface is not negligible. Moreover,
among the published models that bring variant effect prediction with them, scores are
calculated in different ways [171, 172]. This leads to ambiguity and makes results hard to
compare.

Leveraging the standardisation of Kipoi, I implemented ISM variant effect prediction
as Kipoi plug-in. This plug-in can be applied to any trained model in the Kipoi zoo that
uses DNA sequence as input. Input and output files of the variant effect prediction are in
VCF format, the standard file format for storing variants. The output VCF files are annotated
with the calculated variant effect. My implementation wraps around the data-loader and
the model to generate valid datasets for the perturbation of model inputs (Fig. 5.2). The

only requirements for data-loaders are that meta-data is returned alongside the model input
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Fig. 5.2 ISM-based variant effect prediction for data-loaders that accept bed files.

data. For variant effect prediction the metadata must annotate every model input sample
with the genomic region it has been generated from. Additionally, if the DNA-sequence
input of the model is in one-hot encoded format, then the encoding must be: A = [1,0,0,0],
c=10,1,0,0], G=10,0,1,0], T =[0,0,0,1].

At the moment variant effect prediction is implemented for SNVs, as variant scoring
for indels cannot be implemented in the same general and "non-invasive" way as described
below. This is because indels alter the DNA sequence length and most models have a fixed
input sequence length, other solutions therefore have to be found for indel effect prediction
in future.

To cater for the different requirements of models, I have designed two alternative ways to

select genomic testing regions on the basis of the query VCEF file:

Variant-centred approach

In agreement with the strategies in Alipanahi et al. [171] and Zhou et al. [172] I attempt to
centre the model input on the query variant. This has the advantage that it gives the model

the most sequence context on either side of the variant to perform inference (Fig. 5.2).

1. The VCF file is read and a genomic region of the input length of the model, centred on

the variant, is generated

2. The data-loader is executed on these regions and produces model input data as well as

meta-data (genomic position of the region, etc.)

3. Leveraging the meta-data, the VCF is overlapped again with the data generated by the
data-loader

4. Based on the overlap a reference (ref) and alternative (alt) set of the model input data

is generated, by base substitution
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Fig. 5.3 ISM-based variant effect prediction for any model and data-loader. Not generating
variant-centred regions.

5. Model predictions are calculated on both input datasets

6. The effect size is calculated in a scoring function that contrasts the predictions and

returns one score

7. The input VCF is annotated with the calculated scores

This approach works for all trained models for which the data-loader can generate model
input data in any region of the genome. Additionally, the data-loader is required to accept
files in the .bed file format.

Overlap-based approach

Some models, such as the HAL and labranchor [174, 175] models for splicing, can only
predict values for specific regions of the genome and therefore the previous approach fails.
To overcome this limitation, I implemented an alternative procedure, where the initial step of
the overlap of data-loader data with the VCF file is different (Fig. 5.3):

1. The data-loader is executed and produces model input data as well as meta-data

(genomic position of the region, etc.)

2. Leveraging the meta-data the VCF is overlapped again with the data generated by the
data-loader

3. Based on the overlap a reference (ref) and alternative (alt) set of the model input data
is generated, by base substitution

4. Model predictions are calculated on both input datasets

5. The effect size is calculated in a scoring function
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6. The input VCF is annotated with the calculated scores

Since this procedure does not have any control over the regions that are being investigated,
it is not possible to centre the tested region on the variant. Also, it can not be guaranteed that
all variants in the VCF file are tested.

Scoring functions

In the previous sections scoring functions were mentioned as a step that converts the model
predictions for reference and alternative input sequences into a single effect score. The user

can select one or more of the following functions to annotate the VCEF file:

* reference: Model prediction for the reference allele
* alternative: Model prediction for the alternative allele

* difference: Difference between model predictions for the alternative allele and refer-

ence allele
* logit-reference: Logit of the model prediction for the reference allele
* logit-alternative: Logit of the model prediction for the alternative allele

* logit-difference: Difference between the logits of the model predictions for the alterna-

tive allele and reference allele

* DeepSEA-effect: An additional score used in Zhuo et al. [172]:

abs(logit-difference) * abs(difference)

This set of scores covers most use cases, but if the user wants to calculate a different

score then that scoring function (written in python) can be supplied at execution time.

5.3.3 Usage

For the user most of the above is handled transparently. In order for Kipoi to execute the
model prediction, variant effect prediction requires a VCF file and all the other input files
and settings that are needed for model prediction (section 5.2.2). The VCF file location
is defined using the -vcf_path argument and the additional files are defined using the

-dataloader_kwargs argument.
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Another application of variant effect prediction are mutation maps (see section 5.4.1).
Mutation maps help to understand the effects of variants in the context of their surrounding
genetic region.

To exemplifying both the modularity and the power of Kipoi’s design we have built an
ensemble model using variant effect prediction on existing Kipoi models. KipoiSplice4
(https://kipoi.org/models/KipoiSplice/4/), an ensemble model designed and implemented
by Ziga Avsec and me, predicts splice variant effects based on outputs of four other Kipoi
models. Therefore, first, variant effect prediction is applied on the MaxEntScan/3prime,
MaxEntScan/5prime, labranchor, and HAL models [184, 174, 175]. Effect scores are then
collected and fed into a logistic regression model that then returns one score for every tested
splice variant. The model can only be applied to variants close to splice sites as Max-
EntScan/3prime, MaxEntScan/5prime, labranchor, and HAL can only perform predictions
in regions close to splice sites. KipoiSplice4 showcases how Kipoi users may create new

models using existing trained models as building blocks.

5.3.4 Summary

Unifying variant effect prediction in Kipoi improves comparability among the results gen-
erated by different models and enhances models that don’t have variant effect prediction
capabilities, at no extra cost. It does not impose any functional limitations on data-loaders
or models and has very moderate requirements on the model and data-loader design. The
premise to have so few requirements for the data-loader and model also made it impossible
to add support for indel effect prediction. For indels the model input sequence length is
altered and since in general, models have a fixed input sequence length, a more invasive
implementation will have to be used.

One of the big advantages of this implementation is that it works for any kind of DNA-
sequence based model, be it a neural network, a support vector machine or any other kind of
model.

Performing variant effect prediction using machine learning models can help resolve
uncertainty of the causal variant due to linkage disequilibrium (LD). In association tests LD
hampers the identification of the causal variants, and often multiple variants in high LD show
similarly high association strength. Machine learning models trained on thousands of regions
of the genome learn regulatory important motifs and sequences. This makes it possible to
assess the effect of high-LD variants independently in the context of regulatory important

regions.


https://kipoi.org/models/KipoiSplice/4/
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5.4 Tools for model and data interpretation and visualisa-
tion

The more complex machine learning algorithms get, the harder it is to follow the reasoning
of how the algorithm came to a prediction. The machine learning model in those cases
turns into a black box, where all the reasoning is hidden from the user and the output is
produced from an input by an unknown function. Neural networks and especially deep neural
networks can reach much higher levels of complexity than traditional methods like decision
trees or support vector machines and hence their reasoning is much harder to comprehend.
Opening the black box of a machine learning model is not purely of academic interest.
For a complex trained model it is hard to ensure the robustness and generalisation of its
predictions, as generally the transformation from model input to model output is complex
and not well understood. Additionally, most neural networks return point estimates of their
predictions without confidence intervals. All of the above hamper the application of complex
trained models in settings, such as in medicine, where correctness of predictions is of utmost
importance and uncertainty estimates of predictions are essential.

To address this problem in neural networks, different approaches have been proposed
and implemented: in image recognition one of the first approaches, saliency maps, was to
use the gradient of the model output with respect to the model input [185] as an indication
of which areas of the input were influential for the output. The idea was to understand how
minimal changes of the output would reflect on the input. Therefore, the most influential
parts of the input have the strongest gradients. Using the gradient as a measure to understand
models, as well as input data, is particularly convenient as all software frameworks for neural
networks implement the calculation of gradients, since they are a core element for training the
neural network. Several variations and enhancements of saliency maps have been published
[186-189].

Approaches such as saliency maps are transferable to genomics. For models that use
DNA sequence as input, influential regions of the sequence that drive the model output, such
as important motifs, have stronger gradients. In Kipoi I have implemented a consistent way
to execute gradient calculation, leveraging the internal functions of software frameworks for
neural networks (see section 5.2.2). Fig. 5.4 shows an example of a visualisation of gradients
calculated for a model input.

Gradients of the output with respect to model input describe how the output changes
as the model input increases, calculated at every position of the input. In other words, the
gradients are calculated using the input data as a baseline. Alternative algorithms have
been developed that calculate the importance of input features with regard to a user-defined
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Fig. 5.4 Displays data of the genomic region chr22:28,711,970-28,712,070 (reverse comple-
ment, hg19) scored by the gradients of FactorNet trained on CTCF binding data (Kipoi model:
FactorNet/CTCF/meta_RNAseq_Unique35_DGF). The letter height of the top panel is the
gradient of the output with respect to the input and on the bottom is a heatmap displaying the
gradient of the output with respect to chromatin accessibility.

baseline and therefore are potentially more informative for capturing all influential features
[188, 189]. In Kipoi, I have integrated the existing python implementation of DeepLIFT
[189], which is capable of estimating feature importance with respect to a baseline. For the
user it is therefore possible to interpret their input data using a trained model and DeepLIFT
without writing a line of python code.

5.4.1 Mutation maps

Variant effect prediction, as it is implemented in Kipoi, calculates the effect of variants as
defined in a VCF. At times it is relevant to visualise the context of the variant and the effects
of variants in the proximity of the query variant. Convolutional neural networks (CNN5s)
predict by finding patterns in the input sequence. CNNs used in genomics therefore base
their predictions for example on binding motifs of transcription factors, which are learned
from the data during training. Important patterns of the input sequence can either be found
by the interpretation tools mentioned above, or by using mutation maps. Mutation maps
calculate variant effects for every base in the input sequence and mutate to all possible
alternative alleles. It is therefore possible to relate the effect of one variant to the effect of
all other possible variants in its proximity. Fig. 5.5 highlights the effect of a query variant
(chr11:5246970:A:C) and the effects of all variants in its proximity on models trained on
GATAZ2 binding. The letter height in the seqlogo-plot on top of the heatmaps shows the
cumulative magnitude of the predicted variant effects at the letter’s position. As a result
the GATA motif is highlighted as a region where mutations are predicted to strongly affect
GATA?2 binding. I implemented the visualisation of mutation maps in Kipoi in order to make
it easily accessible for users.
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Fig. 5.5 Mutation map (heatmap of variant effects, blue negative effect, red positive effect) for
query variant rs35703285 (chr11:5246970:A:C) and the predicted GATA?2 binding difference
between alleles for 4 different models. The letter height is the sum over all effects (absolute
value) of all possible variants in one position. The black boxes in the mutation maps highlight
the position and the alternative allele of the query variant. Additionally, stars highlight
variants annotated in the human variant database ClinVar with red: (likely) pathogenic, green:
likely benign, grey: uncertain or conflicting significance, other.
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Notably, mutation maps are not limited to neural network models, but can only be applied
to models that used DNA sequence as input. In Fig. 5.5 mutation maps are calculated for
non-neural network models such as position weight matrices (PWMs) and a support vector
machine model (Isgkm-SVM), as well as DeepBind and DeepSEA, which are both neural
networks.

Mutation maps are calculated by iteratively applying variant effect prediction on the
whole input sequence. This may cause considerable computational costs when applied to
many regions of the genome. It is therefore relevant to have alternative approaches like

gradient-based methods that predict importance of all input features in a single calculation.

5.4.2 Summary

All of the above methods, including visualising the activation states of intermediate layers
(see section 5.2.2), attempt to help understand model predictions. For genomics it is dif-
ficult to find easily understandable measures of model interpretability, as genomics data
is not as naturally interpretable as images. Furthermore, different genomic and epigenetic
measurements are in a complex relationship with each other. As an example I showed the
gradients with respect to input data for the FactorNet model [173] (Fig. 5.4). The FactorNet
model aims to predict transcription factor binding probabilities based on DNA sequence, also
taking chromatin accessibility and mappability into account. Fig. 5.4 shows the gradients of
a CTCEF transcription factor binding model with respect to a genomic region that overlaps an
empirically found CTCF binding site. Interpreting the gradients on the input DNA sequence
is rather straightforward - the binding motif is highlighted. But already the visualisation of
the gradients on the chromatin accessibility data is hard to interpret. Regions of high interest
are highlighted, but it is hard to intuitively understand whether that pattern of gradients makes
sense and how it relates to biological properties of the cell. This highlights that model and
data interpretability is still in its infancy and more effort has to be put into finding better
ways to validate and interpret models.

5.5 Discussion

The lack of a universal platform for sharing trained machine learning models, in particular
for the field of genomics, hampers exchange, re-use and reproducibility. Such a platform
would have to manage software dependencies and allow for easy setup and execution of
said models. Together with a fellow PhD student, Ziga Avsec (TU Munich), and other
international collaborators from Stanford University, we have developed Kipoi. Kipoi is a
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model repository ("model zoo") which allows the contribution of trained models irrespective
of their underlying software framework and programming language. Apart from simplest
possible sharing and installation of models, Kipoi has an application programming interface
(API) which allows the access and execution of all models in a unified way, hiding model-
specific commands from the user.

After the setup of a model, Kipoi’s core features facilitate the execution of model
prediction using new data. To do so, Kipoi models - trained machine learning models
submitted to the Kipoi model zoo - are a bundle of a data preprocessing pipeline ("data-
loader") and the core model. Data-loaders encapsulate all data preprocessing steps necessary
to convert standard bioinformatics files into a model-compatible format. Data-loaders are
written by model contributors and are a cornerstone for Kipoi’s simplicity of use.

Kipoi’s API defines a consistent approach that generalises access to core functions of
machine learning frameworks. Most machine learning models are based on a framework
that facilitates model development. This framework defines how the model can be executed,
which function has to be called in order to perform predictions and how model parameters
can be accessed. In Kipoi we have currently integrated four popular machine learning
frameworks: Keras [181], PyTorch [179], Tensorflow [178], and scikit-learn [183]. For those
frameworks we have implemented full integration for all Kipoi API functions required for
model prediction and model interpretation. If a model contributor wants to add a model to
the zoo that is not based on any of those frameworks, they have to, at the least, define how
Kipoi can execute model prediction. An example of such a model is the 1sgkm-SVM model,
which I have successfully contributed to the model zoo.

Leveraging the standards and components that we have defined in Kipoi, I was able to
implement variant effect prediction for single nucleotide variants (SNVs) in a way that does
not require any adaptions of model or data-loader code. With my approach way, any model
that uses DNA sequence as input can be used to score variant effects. The procedure uses
VCF files, a standard bioinformatics file format for genetic variants, as input and produces
annotated VCEF files as output. The non-invasiveness of the implementation causes no extra
implementation cost for the model contributor. In order to enable a trained model for variant
effect prediction, only a few settings in the model and data-loader configuration files have to
be added.

In addition to variant effect prediction I have implemented unified access to model
interpretation functionality irrespective of the underlying software framework. Especially,
for the deep learning frameworks Keras [181], PyTorch [179], and Tensorflow [178] 1
have written abstracting functions that hide and unify framework-specific function calls in

order to extract intermediate layer activation and calculate gradients with respect to model
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input. These features are commonly used to open the "black box" of machine learning
models and to interpret input data in the context of the model task. Without this abstraction
in-depth knowledge of the machine learning framework is necessary in order to perform
aforementioned calculations. In the Kipoi API, one function call performs the corresponding
calculations in each framework.

Kipoi can be used to enhance and build new models. Since Kipoi ensures model func-
tionality and facilitates model setup, it also greatly reduces setup time for model developers,
who plan to enhance or transfer an existing model to a new one. The data-loader makes it
unnecessary to spend time on correct preprocessing of input data. Additionally, new Kipoi
ensemble models can be built by integrating existing Kipoi models into a new one. An
example of those is KipoiSplice4 (https://kipoi.org/models/KipoiSplice/4/), an ensemble
model designed and implemented by Ziga Avsec and me, that predicts splice variant effects
based on outputs of four other Kipoi models.

We envision Kipoi to become the main platform for sharing published machine learning
models in genomics and beyond, in analogy to how experimental data is shared on platforms
like the Gene Expression Omnibus (GEO) [190]. The flexibility of Kipoi’s design allows
the integration of any model using any underlying software framework and programming
language. Specialised functionalities which are not currently covered by Kipoi can easily be

added as Kipoi plug-ins, which may work on all or on a subset of models in the model zoo.


https://kipoi.org/models/KipoiSplice/4/




Chapter 6
Conclusion

In my PhD I have studied the effects of non-coding variants using different techniques: |
have performed eQTL analyses to identify gene expression regulatory variants, characterised
them with genome annotation, chromatin conformation and colocalised them with GWAS
results. Additionally, with a fellow PhD student Ziga Avsec from Prof. Julien Gagneur’s
group at the Technical University of Munich, Germany, I have developed a software, (Kipoi),
which facilitates sharing of trained machine learning models in genomics and beyond. As
part of that I have focussed on the implementation of techniques for the effect prediction of
genomic variants using trained models and tools to understand the reasoning for predictions
within the models.

In an effort to aggregate all available eQTL datasets of purified human blood cells, I
have compiled eQTL datasets from four studies on seven purified blood cell types. The
aim was to generate a resource that enables the detection of currently undetected gene
expression-associated variants and increase robustness of the known findings. I re-processed
the individual datasets uniformly, merged them and performed cis-eQTL analyses, taking
batch effects into account. For monocytes the collection was the largest with 1,480 samples
while for other cell types sample sets were smaller (table 3.4). Bigger sample sizes enabled
higher confidence in the identification of associations, as well as the detection of variants
with more subtle effects. Additionally, the analysis has been extended from common to low-
frequency variants, identifying additional regulatory variants. Comparing eQTLs of purified
monocytes with eQTLs from whole blood, I discovered that the majority of gene-variant
associations can be detected in both. This was the case for a whole blood eQTL dataset
of similar size, as well as for one of ten times the sample size of the aggregated monocyte
dataset. The two main advantages of purified cell types are: firstly, that the estimated
effect size of eQTLs detected in whole blood is derived from a mix of cell types, averaging

over potentially different effect magnitudes and directionalities of the same gene-variant
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association in different cell types, and secondly, data from purified cell types enables the
identification of eQTLs in a cell type specific manner.

Expression QTL datasets from purified cell types can be used to identify cell type specific
regulatory variants, interpret and annotate genomics datasets, and help identify potentially
causal genes for trait and disease. By clustering the replication of eQTLs across cell types
I found that cell type specificity of eQTLs can recapitulate the ontology of these seven
heamatopoietic cells. This alignes with the cell type specificity of gene expression regulatory
elements [6, 191], thereby indicating that similarity of gene expression regulation relates to
blood cell differentiation. Comparing eQTL effect directionality across cell types, I could
reproduce previous findings [87, 112] that effect directionality of the same gene-variant
association may differ between cell types. This confirms that gene regulation is a complex
process that requires multiple DNA-binding proteins to work together in a cell type specific
manner. The change of effect directionality also has practical implications on the viability
of effect size estimates in whole blood eQTL results, as mentioned in the last paragraph.
In an effort to link genes to blood cell traits I have colocalised eQTL results with results
from a recent GWAS study on blood cell indices [45]. I found colocalisation between
60 (out of 2,069) GWAS variants and 58 (out of 13,230) eQTL genes. One of those was
variant rs4148436, associated with plateletcrit, which could be linked to ABCC4 expression.
Loss of ABCC4 was independently found to be a potential cause for impaired haemostasis
resulting in bleeding by my former PhD colleague, Dr. Tadbir Bariana at the Department of
Haematology. Together, these observations highlight the relevance of ABCC4 in the platelet
biology and function. Gene expression is regulated by many variables, one of those being the
binding of transcription factors to DNA [12]. Molecular interactions between these bound
transcription factors and other DNA-binding proteins contribute to cell type specific three
dimensional interaction patterns between promoters and expression regulatory elements of
the genome, thereby driving cell type specific programmes of gene transcription. In my
analyses I found that promoter interacting regions identified by promoter capture HiC are
enriched for expression regulatory variants, supporting the aforementioned hypothesis. 1
published these results as a co-first author in Javierre et al. [160].

Biological processes in a cell are complex and generally non-linear. It is therefore
necessary to apply complex algorithms to understand and model cellular regulation. With
increasing amounts of available biological measurements it has been possible to use machine
learning models for the study of genomics. This led to increasing numbers of published
machine learning models in genomics. However, the simple use and rapid enhancement and
improvement of existing models is hindered by the lack of a consistent standard for sharing of

trained models. Together with Ziga Avsec, I have developed Kipoi, which defines standards



107

for sharing, and for facilitating installation and execution of trained models. To date, Kipoi
contains more than 2,000 models, which are freely accessible. To enhance Kipoi’s core
functionality I have implemented a method that enables any DNA-based predictive models to
estimate effects of genomic variants. To do this I mutate DNA sequence inputs to models
and calculate the difference of the model predictions. This turns existing machine learning
models in genomics into variant annotation tools. Thanks to Kipoi’s standardisation all these
functions can be executed in a user-friendly environment. We could show the power and the
simplicity of use of Kipoi in a preprint in which I am second co-first author [165].

In order to make the output of my research available to the community I am currently
preparing a manuscript in which I will publish the eQTL results as well as a website for
interactive exploration of these results. I hope that this will help researchers to relate and
annotate their data with the one presented here. I have already made my data available for
colocalisation studies that will be performed on the MEGASTROKE [192] GWAS, and on
two still unpublished GWAS, one on coronary artery disease and one on a new category of
blood cell traits.

Kipoi is already publicly available and in use. The project’s immediate future is ensured
as grants have been secured for a full-time PhD student or post doctoral fellow. We hope
that Kipoi will serve as a new standard for the publication of machine learning models in
genomics, and that it will therefore simplify access to published models, and facilitate their

comparison, re-use, and enhancement.
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