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Abstract 1 

Genetic variants identified by genome-wide association studies (GWAS) primarily affect 2 

complex phenotypes via regulatory mechanisms on the transcriptome. To 3 

comprehensively investigate the effect of genetics on human gene expression, we 4 

performed cis- and trans- expression quantitative trait locus (eQTL) analyses using blood-5 

derived bulk gene expression profiles from 31,684 individuals through the eQTLGen 6 

Consortium. 7 

We detected local cis-eQTL effects for 88% of the 19,942 genes studied, and these 8 

effects were replicable in multiple cell types and tissues. In contrast, distal trans-eQTLs 9 

(detected in whole blood for 37% of the 10,317 trait-associated variants studied) showed 10 

lower replication rates in individual cell types, partially due to statistical power and 11 

confounding effects of cell-type-composition differences across individuals. We therefore 12 

performed extensive replication analyses using single-cell RNA-seq eQTL data on 1,139 13 

individuals. These trans-eQTLs exert their effects via several mechanisms of action, with 14 

regulation through transcription factors (TFs) being the most prevalent. In some cases, 15 

multiple unlinked variants associated with the same complex trait converged on trans-16 

genes that are known to play central roles in disease etiology. These converging patterns 17 

were recapitulated when ascertaining the effect of polygenic scores (PGS) calculated for 18 

1,263 GWAS traits. Expression levels of 13% of the studied genes correlated with PGS, 19 

and many resulting genes are known to be associated with those traits. 20 

This work represents the largest effort to date aimed at systematically identifying the local 21 

and distal transcriptional consequences of human genetic variation. The resource we 22 
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present here serves as a starting point for more in-depth interpretative studies of complex 1 

traits.  2 
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Main text 1 

Expression quantitative trait loci (eQTLs) have become a common tool to interpret the 2 

regulatory mechanisms of variants associated with complex traits by genome-wide 3 

association studies (GWAS). In particular, cis-eQTLs, where gene expression levels are 4 

affected by a gene-proximal single nucleotide polymorphism (SNP) (<1 megabases; Mb), 5 

have been widely used for this purpose. However, the expression of cis-eQTL genes 6 

generally explains only a modest proportion of disease heritability1, suggesting additional 7 

routes of regulation leading to disease. 8 

Trans-eQTLs, where the SNP is located distal to the gene (>5 Mb) or on other 9 

chromosomes, generally have smaller effect sizes than cis-eQTLs and thus require larger 10 

sample sizes for detection. However, we reasoned that trans-eQTLs could also be 11 

relevant for complex traits because, compared to stronger cis-eQTL effects, each 12 

individual trans-effect is less likely to be dampened by compensatory post-transcriptional 13 

buffering or removed from population by negative selection2,3. Indeed, genes regulated 14 

by weak eQTL effects are estimated to have more impact on the phenotype as compared 15 

to those regulated by strong eQTL effects4. At the same time, individual trans-eQTL SNPs 16 

can affect many genes and collectively have a widespread impact on regulatory networks. 17 

Consequently, weak trans-eQTLs have the potential to identify trait-relevant genes, and 18 

trans-eQTLs1,5–10 have already been used to prioritize genes that are likely to contribute 19 

to disease5.  20 

While trans-eQTLs are useful for the identification of the distal effects of a single variant, 21 

a different approach is required to determine the combined consequences of all variants 22 

associated with a polygenic trait. Polygenic scores (PGSs) summarize genome-wide 23 

combined risk for a complex disease into a single metric that may be of clinical use for 24 
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the stratification of individuals in groups of high and low genetic risk11,12. The recently 1 

proposed omnigenic model13,14 postulates that the heritability of most complex traits is 2 

dominated by numerous weak trans-effects and hypothesizes that those effects converge 3 

on a smaller set of trait-relevant ‘core’ genes. This suggests that associations between 4 

PGSs and gene expression (expression quantitative trait scores, eQTS) could help to 5 

prioritize putative trait-relevant genes (Supplementary Equations, Liu et al.14). While it 6 

remains unclear what fraction of the genome affects complex traits, we here 7 

systematically investigated trans-eQTLs and eQTS to determine how genetic effects 8 

influence and converge on genes and pathways and whether these effects could be 9 

informative about the biology of the respective traits. 10 

To maximize the statistical power to detect eQTL and eQTS effects, we performed a 11 

large-scale meta-analysis in up to 31,684 blood samples from 37 cohorts (assayed using 12 

three gene expression platforms) in the context of the eQTLGen Consortium. This allowed 13 

us to identify cis-eQTLs for 16,987 genes, trans-eQTLs for 6,298 genes and eQTS effects 14 

for 2,568 genes (false discovery rate (FDR) <0.05, determined by permutations 15 

(Methods); 15,073, 2,666 and 905 genes, respectively, after more conservative 16 

Bonferroni correction; out of 19,942 tested genes; Figure 1) that revealed complex 17 

regulatory effects of trait-associated variants. We then replicated these eQTLs across 18 

gene expression platforms, in other tissues and in single cell data. What we found was 19 

that, while the overall concordance was good, formal replication remained limited, 20 

possibly due to the effects of genetics on blood cell composition, the limited power of the 21 

available replication datasets and the cell-type-specific nature of distal effects. To 22 

demonstrate the utility of our resource, we combined the associations we identified with 23 

additional data layers to gain biological insights into the mechanisms of blood eQTLs and 24 

complex traits.  25 
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 1 

Figure 1. Overview of the study. Overview of discovery analyses and their results.  2 

 3 

Results 4 

Meta-analyses on local and distal gene expression 5 

We performed cis-eQTL, trans-eQTL and eQTS meta-analyses using eQTLGen 6 

Consortium data from 31,684 individuals (Figure 1A, Supplementary Table 1, 7 

Supplementary Information). Our consortium contains datasets profiled using different 8 

expression profiling platforms, including several Illumina and Affymetrix expression array 9 

versions and RNA-seq, making a direct meta-analysis impossible. We therefore made 10 

use of co-regulation patterns between genes to assign the best-matching expression 11 

probe from each expression array type to each gene (Methods). After applying this 12 
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method, we meta-analysed the different expression profiling platforms on gene-level. We 1 

then performed eQTL and eQTS discovery and replication analyses between each 2 

combination of platforms. Because the different platforms had variable sample sizes, 3 

which resulted in differences in replication power, replication rates varied from 86.3% 4 

(among cis-eQTLs in the largest replication dataset) to 13% (among trans-eQTLs in the 5 

smallest replication dataset) (Supplementary Figure 1A-C). However, effects that were 6 

replicated (FDR<0.05) showed consistent allelic directions for cis-eQTLs (average over 7 

all comparisons 93.23%), trans-eQTLs (average over all comparisons 99.2%) and eQTS 8 

(average over all comparisons 99.4%). This demonstrates that our integration method 9 

enabled us to combine different expression profiling platforms and, importantly, that the 10 

eQTLs and eQTSs identified by our approach are replicable between different whole 11 

blood datasets (Methods, Supplementary Results, Supplementary Figure 1A-C). In 12 

all the analyses, we accounted for unknown technical confounders (such as batch effects) 13 

and biological confounders (such as interindividual differences in cell-type-composition) 14 

by correcting the expression data per cohort for up to 25 expression principal components 15 

(PCs) that were not associated with genetic variation (Methods). When testing for cell-16 

type-composition effects in a subset of samples (N up to 3,831) from the BIOS cohort, 17 

this correction adjusted for the majority (Supplementary Note, Supplementary Figure 18 

2). Nevertheless, we acknowledge that our dataset may still include residual cell-type-19 

composition effects. 20 

As our analysis tested nearly 20,000 genes, our study required a strategy to correct for 21 

multiple testing. Bonferroni correction is overly stringent for eQTL analysis due to many 22 

correlating genes and extensive linkage between genetic variants. Instead, permutation-23 

based approaches5,15–17 or Benjamini-Hochberg FDR18,6,1 are often used for multiple 24 

testing correction in eQTL studies. Here, we adopted a permutation-based strategy5,15,19 25 
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where each cohort performed the regular analyses and 10 permutations in which the links 1 

between gene expression and genotypes were shuffled in each permutation (Methods). 2 

As with the non-permuted results, we meta-analyzed the results from each permutation 3 

and compared the P-value distributions across all tests between the non-permuted and 4 

permuted data to determine an FDR estimate for each association (methodology varies 5 

slightly between cis-eQTL, trans-eQTL and eQTS analyses, see details in Methods). We 6 

have previously shown that these FDR estimates stabilize after only a few permutations, 7 

demonstrating that 10 permutations is sufficient5. By evaluating the FDR estimates over 8 

all tests performed, our approach yields an analysis-wide estimate of FDR (i.e. genome-9 

wide for cis-eQTLs), rather than a specific FDR estimate per gene, which would require 10 

many more permutations. For all the discovery analyses, we observed that our strategy 11 

was more conservative than Benjamini-Hochberg FDR and less stringent than the 12 

Bonferroni method (Supplementary Figure 3). Because users of our resource may 13 

require different levels of stringency, we provide both permutation-based FDRs and 14 

Bonferroni-corrected P-values for all the reported effects. 15 

Local genetic effects on gene expression in blood are widespread and 16 

replicable in other tissues 17 

We identified cis-eQTLs (SNP gene distance <1 Mb, FDR<0.05; Methods) for 16,987 18 

unique genes (88.3% of autosomal genes expressed in blood and tested in cis-eQTL 19 

analysis; Figure 1B; 15,073 genes attained the more conservative Bonferroni threshold 20 

of 3.9×10-10).  21 

After we observed that cis-eQTLs replicated between whole blood datasets 22 

(Supplementary Figure 1A), we investigated the replicability of cis-eQTLs in other 23 

tissues. We considered an eQTL replicated when it was significant in the replication 24 



8 

dataset (Benjamini-Hochberg FDR<0.05) and had the same allelic direction. In general, 1 

cis-eQTLs showed directional consistency across tissues. In 47 postmortem tissues17, we 2 

observed an average replication rate of 14.8% (discovery analysis without GTEx, 3 

replication FDR<0.05 in GTEx; median 15.0%, range 3.6–29.6% when excluding whole 4 

blood) and, on average, a 94.9% concordance in allelic directions (median 95.2%, range 5 

86.7–99.2%, when excluding whole blood) among the cis-eQTLs for which the lead SNP 6 

effect replicated in GTEx (Supplementary Figure 4, Supplementary Information and 7 

Supplementary Table 3). 8 

Genes highly expressed in blood that did not have a detectable cis-eQTL effect were 9 

more likely (two-sided Wilcoxon rank sum test, P=2×10-6; Figure 2A) to be intolerant to 10 

loss-of-function mutations in their coding region20, suggesting that eQTLs on such genes 11 

are selectively constrained, as has been recently proposed21. 12 
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 1 

Figure 2. Results of the cis- and trans-eQTL analysis. All genes tested in (A) cis-eQTL 2 

analysis, (B) trans-eQTL analysis, and (C) eQTS analysis were divided into 10 bins based on 3 

their average expression levels in blood (BIOS Cohort). Highly expressed genes without any 4 

eQTL effect (grey bars) were less tolerant to loss-of-function variants (two-sided Wilcoxon rank 5 

sum test on pLI scores). Indicated are median pLIs per bin. n/s (not significant) P>0.05; * P<0.05; 6 

** P<0.01; *** P<0.001; **** P<1×10-4. (D) Genes with strong effect sizes are more likely to have 7 

a lead SNP fall within (top panel) or close to the gene (bottom panel) (E) Lead cis-eQTL SNPs 8 

overlap with capture Hi-C contacts with transcription start sites (TSS). 9 

We observed that 92% of lead cis-eQTL SNPs were located within 100kb of the gene 10 

(Figure 2D) and that stronger cis-eQTL effects were more likely to map closeby (within 11 

20kb for 84.1% of the top 20% strongest eQTLs).  12 
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The lead cis-eQTL SNPs which located >100kb from the transcription start site (TSS) or 1 

transcription end site (TES) of the cis-eQTL gene were more likely to overlap with capture 2 

Hi-C contacts than expected by chance (2.0-fold enrichment compared to when location 3 

of Hi-C target was flipped relative to the TSS; P<3.3×10-12; two-tailed two-sample test of 4 

equal proportions; Methods, Figure 2E, Supplementary Results). This suggests that 5 

some long-range cis-eQTLs are caused by physical interactions between the genomic 6 

regions of the SNP and gene. For example, a capture Hi-C contact for IRS1 overlapped 7 

the lead eQTL SNP, mapping 630kb downstream from IRS1 (Figure 2F). Similarly, we 8 

observed an enriched overlap with Hi-C contacts for short-range cis-eQTL effects 9 

(<100kb, 1.3-fold; P<9.1×10-16; two-tailed two-sample test of equal proportions; Figure 10 

2E, Supplementary Results). 11 

When comparing our results to the 5,440 protein-coding cis-eQTL genes that we had 12 

previously identified in 5,311 samples5, the lead SNPs in the current study typically 13 

mapped closer to the cis-eQTL gene (Supplementary Figure 5). In GWAS studies, larger 14 

sample sizes and more dense imputation panels generally increase the resolution of 15 

signals in associated loci, especially for weaker effects. Additionally, GWAS simulations 16 

have indicated that lead GWAS signals generally map near the causal variant (within 17 

33.5kb in 80% of cases)22. Since the majority of the cis-eQTL variants identified in our 18 

study map within 100kb of the TSS and TES, we consider it highly likely that causal 19 

variants affecting gene expression are also generally within these regions. 20 

One third of trait-associated variants have trans-eQTL effects  21 

An alternative strategy to gain insight into the molecular functional consequences of 22 

disease-associated genetic variants is to ascertain trans-eQTL effects. Due to the 23 

extensive computational burden that genome-wide trans-eQTL analyses would impose 24 
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on participating cohorts, we constrained our analyses to a subset of variants that have 1 

previously been associated with complex phenotypes. We tested 10,317 trait-associated 2 

SNPs (GWAS P≤5×10-8; Methods, Supplementary Table 2) and identified 59,786 trans-3 

eQTLs (SNP-gene distance >5 Mb; P<8.3×10-6, corresponding to an FDR<0.05; 17,395 4 

trans-eQTLs were below the Bonferroni threshold of P<2.4×10-10; Supplementary Table 5 

4, Supplementary Figure 6), representing 3,853 unique SNPs (37% of tested GWAS 6 

SNPs) and 6,298 unique genes (32% of tested genes; Figure 1C). The largest previous 7 

trans-eQTL meta-analysis in blood5 (N=5,311) identified trans-eQTLs for only 8% of the 8 

trait-associated SNPs tested, indicating that a larger sample size is beneficial for the 9 

identification of distal effects. Similar to what we saw for cis-eQTLs, highly expressed 10 

genes without detectable trans-eQTL effects were more likely to be intolerant to loss-of-11 

function variants (two-sided Wilcoxon rank sum test, P=6.4×10-7; Figure 2B), suggesting 12 

constrained expression of these genes. 13 

While blood-cell-composition SNPs23 comprised 21% of all the trait-associated SNPs 14 

tested, they represented the majority (64%) of trans-eQTL SNPs. This could be due to 15 

the fact that many of the identified trans-eQTL SNPs regulate the abundance of a specific 16 

blood cell type and could thus result in trans-eQTL effects on genes specifically 17 

expressed in that cell type. Although we corrected the individual expression datasets for 18 

cell-type composition effects using PCs (Methods, Supplementary Note), the fact that 19 

numerous trans-eQTLs emanate from known blood-cell-composition SNPs indicated that 20 

there was likely a residual effect of cell composition. We therefore aimed to distinguish 21 

trans-eQTLs caused by intracellular molecular mechanisms from eQTLs induced by blood 22 

cell type-composition. 23 

To do so, we investigated a subset of up to 1,858 whole blood samples from the BIOS 24 

Consortium for which 49 measured and predicted blood cell metrics were available 25 
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(Methods, Supplementary Note). We first reasoned that if a trans-eQTL is intracellular 1 

(i.e. not driven solely by cell-type-composition), the main trans-eQTL effect should remain 2 

after correcting for cell-type-composition differences. We constructed a linear model 3 

incorporating all 49 available cell metrics (Methods) and tested whether a residual main 4 

effect remained for each trans-eQTL. We were able to test 55,311 trans-eQTLs in this 5 

subset (minor allele frequency (MAF) >0.05 in each BIOS cohort) and found that 4,241 6 

(7.67%) were below the P-value threshold (P<8.3×10-6, threshold determined in discovery 7 

meta-analysis) in a linear model without any cell type metrics. Out of these, 2,952 (69.6% 8 

of 4,241 effects) trans-eQTLs remained below the significance threshold when all 49 cell 9 

metrics were included in the model (Supplementary Figure 7; Supplementary Table 10 

5). Here we need to acknowledge that cell-type-composition may lead to false positive 11 

trans-eQTL effects, but we also note that large-scale cell count measures were not 12 

available for any of the included cohorts, which precluded us from drawing definite 13 

conclusions about this issue. We next reasoned that, if a trans-eQTL is generic (i.e. it has 14 

similar effect sizes within each individual cell type), the main trans-eQTL effect would also 15 

remain after correcting for cell-type-composition differences and their interactions with the 16 

trans-eQTL SNP. When we included all the interaction terms between cell-type metric 17 

and genetic variant in the model, only 33 (0.06%) out of 4,241 trans-eQTLs remained 18 

below the P-value threshold (P<8.3×10-6), suggesting that most trans-eQTLs have 19 

variable effect sizes in different blood cell types (Methods; Supplementary Figure 7). 20 

We also aimed to assign each of the trans-eQTLs to the cell type it most likely manifests 21 

in by testing the interaction between genotype and each cell metric (Methods). However, 22 

no individual interaction effects were below the FDR threshold (Benjamini-Hochberg 23 

FDR>0.05; smallest P=1.37×10-7; Supplementary Table 6), likely due to the extensive 24 

multiple testing burden and limited power. 25 



13 

Our replication analyses between different expression platforms suggest that trans-1 

eQTLs are replicable between blood datasets (Supplementary Figure 1B) but cannot 2 

identify cell-type-composition effects. To estimate the fraction of trans-eQTLs that 3 

constitute intracellular trans-eQTLs, we performed replication analyses in bulk RNA-seq 4 

datasets derived from specific cell types: lymphoblastoid cell lines (LCL), induced 5 

pluripotent cells (iPSCs) and several purified blood cell types (CD4+, CD8+, CD14+, 6 

CD15+, CD19+, monocytes and platelets). Additionally, we used blood DNA methylation 7 

QTL data to support the validity of trans-eQTLs. In total, 4,018 (6.7% of the total) trans-8 

eQTLs showed replication in at least one cell type (Benjamini-Hochberg FDR<0.05; 9 

93.3% with same allelic direction, on average) or were supported by the methylation data 10 

(Benjamini-Hochberg FDR<0.05; meQTL effect direction supporting the discovery eQTL 11 

effect, see Supplementary Information, Supplementary Figure 8, Supplementary 12 

Table 4). We then investigated whether trans-eQTLs are shared across tissues from 13 

GTEx16. We repeated our discovery meta-analysis while excluding whole blood samples 14 

from GTEx, performed replication analyses in all GTEx tissues, and observed that the 15 

replication rate was very low (0.07% of trans-eQTLs replicated in any non-blood tissue, 16 

0.09% in blood, Benjamini-Hochberg FDR<0.05). However, the allelic concordance of 17 

significant effects was, on average, 66% in non-blood tissues and 100% in blood 18 

(Supplementary Table 4). Despite these low replication rates, trans-eQTLs showed an 19 

inflation of replication signal in the majority of tissues (Supplementary Figure 9A), most 20 

notably in whole blood, esophagus muscularis, liver, heart atrial appendage and non-sun-21 

exposed skin.  22 

Ideally, replication of individual trans-eQTLs should be performed using single-cell 23 

(sc)RNA-seq eQTL datasets, since such datasets are less impacted by the cell-type-24 

composition differences present in bulk eQTL datasets. Currently available scRNA-seq 25 
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eQTL datasets are still relatively small, but by meta-analysing two different PBMC-based 1 

scRNA-seq cohorts using the 10X Chromium platform (OneK1K, N=982 and 1M-2 

scBloodNL, N=157), we were able to perform trans-eQTL replication analysis in B-cells, 3 

CD4+ T-cells, CD8+ T-cells, classical monocytes, non-classical monocytes, dendritic 4 

cells, natural killer (NK) cells and plasma cells from up to 1,139 individuals (up to 3.6% of 5 

the discovery sample size, Supplementary Note). For each of the 59,786 discovery 6 

trans-eQTLs, we tested the association within each cell type, but only if the trans-eQTL 7 

gene was sufficiently expressed (i.e. had a missing sample fraction of at most 20% in the 8 

larger OneK1K dataset). We did this because the expression of only a few thousand 9 

genes per cell were quantified in scRNA-seq data.  10 

Since scRNA-seq eQTL data is noisier than bulk RNA-seq data, fewer eQTLs can be 11 

identified when using the same number of samples24. Moreover, trans-eQTLs in 12 

eQTLGen were identified using 31,684 samples, while the single-cell replication cohort 13 

was limited to 1,139 individuals. Therefore, since the statistical power to formally replicate 14 

trans-eQTLs was limited, we first studied whether there was any inflation of replication 15 

test statistics. For 7 out of the 8 cell types examined, we observed inflation of signal 16 

(Supplementary Table 7, Supplementary Figure 9A; for the least abundant cell type, 17 

plasma cells (Figure 3A), no inflation of signal was observed) and greater than expected 18 

allelic concordance with the discovery analysis (Figure 3A; Supplementary Table 7; 19 

two-sided binomial test P<0.05). Similarly, by correlating the effect sizes of independent 20 

trans-eQTLs using the rb method (Methods)25, we observed that blood trans-eQTL effect 21 

sizes correlate significantly with replication effects in the scRNA-seq data (Figure 3A; 22 

two-sided P<0.05) for 4 out of 8 cell types (classical monocytes (P=3.36×10-8, rb=0.514, 23 

S.E.=0.093), NK cells (P=3.24×10-4, rb=0.185, S.E.=0.051), CD8+ lymphocytes 24 

(P=3.41×10-3, rb=0.454, S.E.=0.155) and B cells (P=5.98×10-3, rb=0.049, S.E.=0.018)). 25 
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More abundant cell types showed higher trans-eQTL effect size correlations with whole 1 

blood (Figure 3A, Pearson R2=0.53, two-sided P=0.04). When conducting rb analysis on 2 

the bulk expression profiles from purified blood cell types (Supplementary Figure 10; 3 

average rb=0.55), we observed rb metrics similar to scRNA-seq data for several cell types, 4 

demonstrating that there is concordance between scRNA-seq and bulk expression data 5 

from specific cell types. 6 

These correlations and inflations of signal show that some of the trans-eQTLs identified 7 

in blood are also present in the cell types in our scRNA-seq data, although it remains 8 

challenging to prioritize individual effects. Still, we aimed to formally replicate individual 9 

trans-eQTLs. Depending on the cell type, we could reliably test between 1,917 and 10 

27,582 of the trans-eQTLs identified in the discovery analysis (Figure 3A). We replicated 11 

35 trans-eQTLs at FDR<0.05 (Supplementary Table 8), with two effects appearing in 12 

more than one cell type. For trans-eQTLs which replicated, the allelic concordance 13 

between the discovery and the replication analysis was very high (97% concordance), 14 

providing additional support for valid replication of these eQTLs.  15 

Lastly, to increase the statistical power to replicate individual trans-eQTLs in the noisy 16 

scRNA-seq data, we combined the summary statistics from 8 cell types by averaging the 17 

Z-scores per trans-eQTL over the available cell types. When confining the analysis to the 18 

729 trans-eQTLs with an absolute average Z>1.96 (corresponding to a nominal P<0.05, 19 

Supplementary Table 8), we observed a relatively high concordance of 84% (Figure 3A, 20 

Supplementary Table 7, two-sided binomial test; P=1.25×10-84) suggesting that many of 21 

these trans-eQTLs represent effects that are independent of cell-type-composition. 22 

Among the 729 trans-eQTLs, we observed a strong enrichment for genes involved in 23 

cytokine-mediated signalling (hypergeometric test from ToppGene26, P=3.3×10-12, 24 

Benjamini-Hochberg FDR<0.05). 25 
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The trans-eQTL effect sizes we observed are generally small (median r=0.033; 1 

Supplementary Figure 24E, Supplementary Results). Considering the small sample 2 

sizes of the bulk and scRNA-seq trans-eQTL datasets available for replication, statistical 3 

power to replicate these effects was low. Consequently, this most likely limited our ability 4 

to replicate individual trans-eQTLs, and our ability to reliably distinguish cell-type-5 

composition effects from intracellular effects. We did observe that ~70% of the trans-6 

eQTLs remain significant after correcting for all available cell metrics, and that the highest 7 

significant correlation of effects (i.e. rb correlation) was 0.5 (classical monocytes) in the 8 

scRNA-seq replication data. We hope that large-scale single-cell eQTL studies will attain 9 

more statistical power in the near future, such that we can more reliably differentiate 10 

intracellular trans-eQTLs from those driven by cell composition. Because the replication 11 

results in external datasets did not enable such a distinction, we decided to use all trans-12 

eQTLs for the following interpretive analyses. 13 

To evaluate which trans-eQTL SNPs also have cis-eQTL effects, we conducted locus-14 

wide trans-eQTL analyses in a subset of samples (N=4,339; EGCUT and BIOS cohorts; 15 

Supplementary Figure 11; Supplementary Methods). For this analysis, we focused on 16 

trans-eQTLs identified in the discovery meta-analysis. We extracted the trans-eQTL 17 

SNPs that showed significant effect in this subset of samples (P<8.3×10-6; P-value 18 

threshold estimated using discovery trans-eQTL meta-analysis) and constructed 12,911 19 

trans-eQTL loci (±1 Mb from tested GWAS SNP) (Methods, Supplementary Figure 11). 20 

We then performed conditional trans-eQTL analyses to identify independent lead trans-21 

eQTL SNPs for each locus (Supplementary Table 9). For each of these lead trans-eQTL 22 

SNPs, we then calculated linkage disequilibrium (LD) with lead cis-eQTL SNPs identified 23 

in the discovery meta-analysis. Out of 12,911 trans-eQTL loci, 3,786 (29.3%) were in LD 24 

with at least one lead cis-eQTL SNP (R2>0.8 between cis-eQTL and trans-eQTL lead 25 
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SNPs, 1kG p1v3 EUR, Supplementary Table 10). Since the discovery cis-eQTL and 1 

trans-eQTL analyses were performed in the same set of samples, we note that this 2 

estimated proportion might be somewhat biased. However, corresponding cis-eQTL 3 

genes were strongly enriched for having transcription factor (TF) activity (“RNA 4 

polymerase II regulatory region sequence-specific DNA binding (GO:0000977)”; one-5 

sided Fisher’s exact test P=9.15×10-6, Benjamini-Hochberg FDR=0.043; Supplementary 6 

Figure 12). 7 

These LD-based lead-SNP-overlap analyses identify loci where two association signals 8 

likely overlap. We next formally tested whether local genes within 100kb of the trans-9 

eQTL SNP affect the expression of the trans-eQTL gene, limiting the analysis to non-HLA 10 

trans-eQTLs detected in the discovery meta-analysis. We used a subset of 4,339 samples 11 

from the BIOS and EGCUT cohorts and included the local gene in a linear model as a 12 

gene-environment (G × E) interaction term. We considered trans-eQTLs with a Benjamini-13 

Hochberg FDR<0.05 for an interaction term to be driven by the expression of a cis-acting 14 

gene. We observed interaction effects for 615 out of 201,106 SNP–cis–trans–gene 15 

combinations tested (Supplementary Table 11), reflecting 585 trans-eQTLs. For 16 

instance, for rs7045087 (associated to red blood cell counts23), we observed that the 17 

expression of the interferon gene DDX58 (mapping 38bp downstream from rs7045087) 18 

interacted with trans-eQTL effects on HERC5, OAS1, OAS3, MX1, IFIT1, IFIT2, IFIT5, 19 

IFI44, IFI44L, RSAD2 and SAMD9 (Supplementary Figure 13), most of which are known 20 

to be in involved in interferon signaling. These results indicate that trans-eQTL effects 21 

can be affected by the expression of local genes, but comprehensive characterization of 22 

such interaction effects requires larger sample sizes. 23 
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We then conducted enrichment analyses to evaluate which biological mechanisms might 1 

lead to trans-eQTLs (Supplementary Methods, Supplementary Results, 2 

Supplementary Figure 14, Figure 3B). The most intuitive interpretation of how a trans-3 

eQTL might arise is that a SNP affects the gene expression of a nearby TF, which leads 4 

to up- or downregulation of its target genes. To test if our trans-eQTLs adhere to this 5 

mechanism, we overlapped our results with known TF–target gene pairs in blood cell 6 

lines27 (Supplementary Methods, Supplementary Results) and found that pairs of cis- 7 

and trans-eQTL genes emerging from the same SNP were 1.28-fold enriched in TF target 8 

genes as compared to all other gene pairs tested in eQTLGen (P=4.0×10-21; two-sided 9 

Fisher’s exact test; Supplementary Figure 14). This limited enrichment could be due to 10 

different molecular mechanisms involved in cis- versus trans-regulation, or mechanisms 11 

not directly involving TFs. To investigate this further, we reasoned that, even if we did not 12 

observe a cis-eQTL, a trans-eQTL SNP would usually act via a gene located near the 13 

trans-eQTL SNP. For this reason, we linked the trans-eQTL SNPs to nearby genes using 14 

the Pascal method28 (Supplementary Figure 15, Supplementary Methods), which 15 

allowed us to calculate a score representing how likely it is that a local gene is an 16 

intermediate of a trans-eQTL effect. We connected local genes to distal trans-eQTL 17 

genes and, using these local–distal gene pairs, performed several enrichment analyses 18 

to reveal mechanisms that can result in trans-eQTL effects. Using this procedure, we 19 

observed a 1.40-fold enrichment for TFs (Figure 3B). Interestingly, there was also a clear 20 

enrichment when we tested genes co-regulated with known TFs (1.38-fold, P=5.8×10-72; 21 

two-sided Fisher’s exact test; Figure 3B), genes co-regulated with known target genes 22 

(3.57-fold, P<1.0×10-308; two-sided Fisher’s exact test; Figure 3B), and genes co-23 

regulated with both (4.37-fold, P<1.0×10-308; two-sided Fisher’s exact test; Figure 3B). 24 

This suggests that many trans-eQTL genes are not direct TF targets themselves, but 25 
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might still represent an indirect consequence of transcriptional regulation. Additionally, 1 

we observed a strong 22.3-fold enrichment (P<1.0×10-308; two-sided Fisher’s exact test) 2 

of co-regulated gene pairs and a 1.45-fold enrichment of protein–protein interaction 3 

(PPI)29  pairs (P=3.5×10-17; two-sided Fisher’s exact test), including co-regulated subunits 4 

of the same protein complex (e.g. CPSF1 and CPSF7) and receptor-ligand pairs (e.g. 5 

CSF3 and CSF3R). We note that cell-type composition effects are likely to contribute to 6 

this high enrichment of co-regulated gene pairs: we observed that co-regulated gene pairs 7 

were depleted by trans-eQTL effects replicating in scRNA-seq data (OR=0.5, P=0.015, 8 

two-sided Fisher’s exact test). However, for 11 trans-eQTLs we observed both cis-trans 9 

co-regulation and nominal replication in scRNA-seq. These pairs included celiac disease-10 

associated rs6498114, affecting CIITA which is co-regulated with genes CD74 and HLA-11 

DMB. It has been previously described that CIITA affects both CD74 and HLA-DMB30. 12 

We also observed an enrichment of Hi-C chromatin contacts31 among local–distal gene 13 

pairs across and within chromosomes (OR=1.47; P=2.4×10-153; two-sided Fisher’s exact 14 

test), suggesting that some trans-eQTLs are driven by physical contact (Supplementary 15 

Figure 14). When we combined all potential mechanisms, 30,579 (51%) of the reported 16 

trans-eQTLs could be assigned a putative biological mechanism, i.e. these trans-eQTLs 17 

could be driven by TF activity, PPI, or co-regulation patterns (Figure 3C, Supplementary 18 

Table 12). While the enrichment of some of these mechanisms (like co-regulation) may 19 

also be a result of the cell-type-composition in blood, the observed enrichment among 20 

known TF-target pairs supports the validity for a subset of our trans-eQTLs. Finally, we 21 

note that, since our trans-eQTL analysis was limited to trait-associated variants, the 22 

enrichment results presented here may not reflect trans-eQTLs for genetic variants that 23 

have not been associated with complex traits or diseases. 24 
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Despite these enrichments, most individual blood trans-eQTL effects remain unexplained. 1 

We have made all trans-eQTLs publicly available (irrespective of their statistical 2 

significance) to facilitate follow-up research into the regulatory mechanisms of trait-3 

associated SNPs. In the Supplementary Results, we highlight examples involving trans-4 

eQTL variants previously associated with age of menarche32 (ZNF131 locus), lipid 5 

levels33 (FADS1/2 locus), IBD34 and SLE35 (IFIH1 locus), asthma36 (GSDMB locus), and 6 

height37 (CLOCK locus), and explore their potential biological mechanisms to show how 7 

this resource can serve as a starting point to generate hypotheses for further research 8 

(Supplementary Figure 16A-E). 9 

 10 
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 1 

Figure 3. Trans-eQTL replication in scRNA-seq cell types and mechanisms leading to 2 

trans-eQTLs. (A) Replication analyses in scRNA-seq of 8 cell types in up to 1,139 unrelated 3 

individuals. Left panels: allelic concordances relative to trans-eQTL effect direction in the 4 

discovery trans-eQTL analysis. Middle panel: correlation estimates (rb) of trans-eQTL effects 5 

between the discovery analysis in blood and scRNA-seq blood cell types. A subset of independent 6 

trans-eQTL effects was used to calculate rb estimates (Methods). n/s P>0.05; * P<0.05; ** 7 

P<0.01; *** P<0.001; **** P<1×10-4. Right panel: correlation between cell-type counts for each cell 8 

type in a subset of samples from the 1M-scBloodNL cohort (N=112) and the rb estimates. Values 9 

shown are the squared Pearson correlation coefficient and the two-sided P-value from the 10 

Pearson correlation test. (B) Enrichment analyses for known transcription factor (TF) 11 
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associations, gene co-regulation and protein–protein interactions (PPIs). Cis-acting genes were 1 

determined by cis-eQTLs or assigned by the Pascal method (Methods, Supplementary 2 

Methods). Enrichment analyses were conducted using the two-sided Fisher’s exact test. (C) All 3 

59,786 trans-eQTLs stratified by putative mechanism of action. Hi-C enrichment results are not 4 

shown as we only observed enrichment when using a lenient (>0) threshold for Hi-C contacts. 5 

Full results are shown in Supplementary Figure 13. 6 

Next, for each GWAS phenotype, we interrogated whether trans-eQTL genes were 7 

enriched for Gene Ontology (GO) terms. In total, we observed 347 enriched GO terms for 8 

208 out of 345 (60%) traits (one-sided Fisher’s exact test, Benjamini-Hochberg 9 

FDR<0.05; Supplementary Table 13). We observed that several of the enriched GO 10 

terms were relevant for the tested trait. For example, trans-eQTL SNPs associated with 11 

celiac disease and inflammatory bowel disease showed the strongest enrichments for GO 12 

terms associated with response to cytokine stimulus (e.g. celiac disease: “cellular 13 

response to cytokine stimulus”, FDR=1.06×10-5), platelet count was enriched for “platelet 14 

degranulation” (FDR=2.6×10-10), and heart rhythm traits were most enriched for 15 

cholesterol-related terms (e.g P-wave duration was enriched for “regulation of cholesterol 16 

biosynthetic process”, FDR=4.6×10-14). 17 

As discussed above, one putative mechanism driving trans-eQTLs could be the action of 18 

a TF regulated in cis, resulting in many potential trans-eQTL effects. We reasoned that 19 

such a variant would act as a master regulator: a ‘hub’ SNP. Indeed, we identified 1,050 20 

(10.2%) ‘hub’ SNPs that regulated the expression of >10 genes (Supplementary Table 21 

14). Of these, 196 (18.6%) had a global up- or down-regulating effect on the expression 22 

levels of downstream genes (two-sided binomial test, Bonferroni-corrected P<0.05, 23 

Supplementary Table 14). We identified 507 (48%) ‘hub’ SNPs showing enrichment for 24 

TF- or miRNA-binding sites (one-sided Fisher’s exact test, Benjamini-Hochberg 25 
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FDR<0.05; Supplementary Table 15) and observed that the respective TF was encoded 1 

by a gene positioned <1 Mb from the ‘hub’ SNP for 9 of these (5 independent loci), which 2 

supports a mechanism of TF binding.  3 

For example, rs17087335 (which is associated with coronary artery disease38) affects the 4 

expression of 88 genes in trans (FDR<0.05, Bonferroni corrected P<0.05 for 39 genes; 5 

Figure 4, Supplementary Table 16) that are highly expressed in brain (one-sided 6 

Fisher’s exact test, ARCHS4 database, Benjamini-Hochberg FDR=6.43×10-14; Figure 4). 7 

Eighty-five out of the 88 (96.6%) trans-eQTL genes were upregulated by the minor allele 8 

of rs17087335 and strongly enriched for the targets of REST (RE-1 silencing transcription 9 

factor; one-sided Fisher’s exact test for ENCODE39,40 project REST ChIP-seq, Benjamini-10 

Hochberg FDR=8.84×10-38, Figure 4). While the minor allele of rs17087335 was 11 

associated with lower expression of REST, it was not in LD (R2<0.2, 1kG p1v3 EUR) with 12 

the lead cis-eQTL SNP (rs13353552). A SNP in high LD with rs17087335, rs3796529 13 

(R2=0.91, 1kG p1v3 EUR), is a missense variant for REST, suggesting that these trans-14 

eQTLs could also arise from a post-transcriptional mechanism of action. Because REST 15 

is a TF that downregulates the expression of neuronal genes in non-neuronal tissues41,42, 16 

we speculate that the observed trans-eQTLs reflect the impact of genetic variation on the 17 

effectiveness of downregulation, although experimental follow-up is required to confirm 18 

this hypothesis. Nevertheless, this example illustrates that blood trans-eQTL effects can 19 

help to prioritize the putatively causal cis-eQTL gene among multiple genes in a locus 20 

(here REST). 21 

 22 
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 1 

Figure 4. REST locus regulates the expression of 88 trans-eQTL genes. Trans-eQTL genes 2 

for the REST locus are highly enriched for REST transcription factor targets and for expression 3 

of neuronal genes. 4 

Next, we investigated whether trans-eQTLs can also identify genes relevant to the biology 5 

of the corresponding complex trait. We grouped the trans-eQTL SNPs by GWAS trait and 6 

tested whether unlinked trait-associated variants showed trans-eQTL effects on the same 7 

gene. This revealed 47 different traits for which at least four independent variants affected 8 

the same gene in trans (Supplementary Table 17), which is 3.4-times higher than 9 

expected by chance (P=0.001; two-tailed two-sample test of equal proportions). For 10 

systemic lupus erythematosus (SLE)43, the gene expression levels of IFIT1, IFI44L, 11 

HERC5, IFI6, IFI44, RSAD2, MX1, ISG15, ANKRD55, OAS3, OAS2, OASL and EPSTI1 12 

were affected by at least three SLE-associated genetic variants (FDR<0.05, all genes 13 

except OAS2 also had at least one trans-eQTL that reached Bonferroni significance). 14 

These genes include nearly all known interferon genes in the well-described SLE 15 

interferon signature44–46 (Supplementary Table 18), reflecting the involvement of 16 

interferon signaling as a key component of SLE pathophysiology (Figure 5). While our 17 

trans-eQTL analysis did not identify novel interferon signature genes, it helped to pinpoint 18 

SLE GWAS loci that collectively affect SLE interferon signature genes. 19 
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 1 

Figure 5. SNPs associated with systemic lupus erythematosus (SLE) converge on a shared 2 

cluster of interferon-response genes. The genes shown are those affected by at least three 3 

independent GWAS SNPs. SNPs in the HLA region are not visualised and SNPs in partial LD are 4 

grouped together. The heatmap indicates the direction and strength of individual trans-eQTL 5 

effects (Z-scores), relative to the SLE risk allele. 6 

Very recently, Vuckovic et al.47 used our trans-eQTL data to interpret SNPs that affect 7 

blood-cell traits and observed that trans-eQTL genes are strongly enriched for genes 8 

known to cause stem cell and myeloid disorders; bleeding, thrombotic and platelet 9 

disorders; and bone-marrow failure syndromes, a finding that underscores the value of 10 

using trans-eQTLs to identify trait-relevant genes. To more comprehensively query for the 11 
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genes affected by several trait-associated loci, we next systematically investigated the 1 

relationships between PGSs and gene expression. 2 

eQTSs identify potential key driver genes for polygenic traits 3 

To ascertain the coordinated effects of trait-associated variants on gene expression, we 4 

used GWAS summary statistics to calculate PGSs for 1,263 traits in 28,158 samples 5 

(Methods, Supplementary Table 19). We reasoned that when the PGS for a specific 6 

trait correlates with the expression levels of a gene, the trans-eQTL effects of the 7 

individual risk variants (Figure 6A) converge on that gene, and it can be prioritised as a 8 

putative driver of the disease (Figure 6B). 9 

Our meta-analysis identified 18,210 eQTS effects (FDR<0.05) representing 689 unique 10 

traits (55% of tested traits) and 2,568 unique genes (13% of tested genes; 285 traits and 11 

905 genes were Bonferroni significant; Supplementary Table 20, Figure 1D). Of these 12 

genes, 719 (28%) were not identified in the trans-eQTL analysis, emphasizing the added 13 

value of analyzing eQTS in addition to trans-eQTLs (Figure 6A-B). We observed that 14 

median eQTS effect sizes were smaller than cis-eQTL effect sizes and similar to trans-15 

eQTLs (Supplementary Figure 24A, E, I). 16 

When calculating PGSs, the P-value threshold for including the SNPs that corresponds 17 

to most explained variation is likely to be trait-dependent. We therefore calculated PGSs 18 

using clumped GWAS lead SNPs at five significance levels (P<0.01; 1×10-3; 1×10-4; 1×10-19 

5; 5×10-8). While we could detect the majority of eQTSs (70.5%) at the most conservative 20 

threshold (P<5×10-8), the total number of results was higher than for each P-value 21 

threshold separately (Supplementary Table 21), suggesting that our analysis captured 22 

different genetic architectures. Unsurprisingly, we identified more eQTSs for GWAS with 23 
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larger sample sizes (Spearman r=0.42–0.59 at different P-value cut-offs). Traits with few 1 

eQTS associations typically also had lower average (Spearman r=0.42–0.72) and 2 

maximum eQTS effect sizes (Spearman r=0.69–0.85; Supplementary Table 22).  3 

As in the previous analyses, the cross-platform replication rates showed high allelic 4 

concordance between blood datasets (average concordance rate was 99.2% for effects 5 

reaching FDR<0.05 in replication dataset, Supplementary Figure 1C), although the 6 

replication rates were quite low in the platforms with fewer samples (21.35-26.4% of 7 

tested effects reached FDR<0.05 in 1,549 FHS samples, Supplementary Figure 1C). 8 

We next ascertained to what extent eQTS associations can be replicated in independent 9 

datasets by studying 1,460 LCL samples, 762 iPSC samples and all GTEx tissues17. We 10 

were able to replicate 10 eQTSs in the LCL dataset, and 9 out of 10 (FDR<0.05) had the 11 

same effect direction as in the discovery dataset (Supplementary Figure 17A, 12 

Supplementary Table 20). Seventy-eight eQTSs replicated in the iPSCs dataset 13 

(FDR<0.05), with 71 (91%) showing the same direction of effect (Supplementary Figure 14 

17B, Supplementary Table 20). Since polygenic risk scores can differ substantially 15 

between populations, we performed GTEx replication analyses while confining ourselves 16 

to Europeans and identified 19 replicating eQTSs with FDR<0.05 and same direction of 17 

effect (eQTS discovery performed without GTEx; 66 replicated when also including non-18 

European samples, Supplementary Table 20). We observed the inflation of replication 19 

signal in some tissues, primarily in blood (Supplementary Figure 9B). Because only a 20 

few eQTS associations were replicated, there was no strong replication signal in non-21 

blood tissues, and the majority of identified eQTS associations were observed for blood-22 

related traits, we speculate that these effects are highly tissue- or cell-type-specific. 23 

However, as suggested by the power analyses, the limited replication in other tissues 24 

could also be a result of the small effect size of eQTS effects (median r=0.037; 25 
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Supplementary Figure 24I) causing a lack of statistical power in the replication datasets 1 

due to their small sample size, or because of variability in PGS estimates caused by 2 

differences in sample characteristics (e.g. age, sex, socio-economic status, etc) of the 3 

included datasets48. 4 

Similar to our analysis of trans-eQTLs, we next investigated whether eQTS could be 5 

driven by interindividual differences in cell-type-composition. We fitted linear models with 6 

and without cell-type metrics as covariates in a subset of 1,858 samples (Methods). Out 7 

of 18,210 eQTSs, 2,313 (12.7%) were below the P-value threshold in the original model 8 

(P<3.02×10-6, threshold determined by discovery meta-analysis). When all 49 cell metrics 9 

were included, 618 (3.39%) out of 2,313 eQTSs remained below the P-value threshold 10 

(Supplementary Table 24, Supplementary Figure 7). Twenty-one (3.4%, affecting 7 11 

genes) replicated in at least one of our replication datasets. However, the majority of 12 

replicating effects originated from PGSs of erythrocyte- and platelet-related GWAS traits, 13 

while also affecting several blood-related genes such as HBG1 and HBG2. This suggests 14 

that some strong cell-type-composition effects might still be detectable after correcting 15 

the data for all main effects. When including all interaction terms between cell-type metric 16 

and PGS, only two eQTSs (0.01%) remained below the P-value threshold (P<3.02×10-6), 17 

demonstrating the cell-type-specific nature of eQTSs. In line with the trans-eQTL effects, 18 

none of the eQTS effects could be reliably assigned to any of the cell-type metrics when 19 

testing individual PRS-cell metric interaction effects (Methods, Benjamini-Hochberg 20 

FDR>0.05; smallest P=1.31×10-6; Supplementary Table 25). 21 

As expected based on the replication results, most eQTS associations (72.8%) 22 

represented blood-cell traits (Supplementary Figure 18, Supplementary Table 20). For 23 

instance, the PGS for mean corpuscular volume49 correlated positively with the 24 

expression levels of genes specifically expressed in erythrocytes, e.g. genes coding for 25 
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hemoglobin subunits (HBG1, FDR<0.05, smallest Bonferroni-corrected P=2.7×10-38 and 1 

HBG2 FDR<0.05, smallest Bonferroni-corrected P=1.14×10-28). eQTS genes were most 2 

strongly enriched by GO terms involved in cellular secretion, blood cell traits and 3 

intercellular signalling (Supplementary Table 23). There was no enrichment for TFs from 4 

the FANTOM550 database (one-sided Fisher exact test, P>0.05). Moreover, we observed 5 

a smaller number of InBio29 PPIs for eQTS genes as compared to non-eQTS genes (two-6 

sided Wilcoxon rank sum test, P=1.98×10-5; median over eQTS genes 20, median over 7 

non-eQTS genes 25; Supplementary Methods, Supplementary Results). This 8 

suggests that transcriptional regulation and PPIs are not the main mechanisms by which 9 

eQTS genes convey their effect on the phenotype. When stratifying eQTS effects by 10 

GWAS phenotype, we identified 90 phenotypes showing enrichment with any GO term, 11 

and these often reflected known biology (one-sided Fisher’s exact test, Benjamini-12 

Hochberg FDR<0.05; Supplementary Table 23). For instance, platelet count showed the 13 

strongest enrichment for the process “platelet degranulation” (FDR=6×10-17), monocyte 14 

count for “neutrophil degranulation” (FDR=4.7×10-16) and total lipids in large HDL for 15 

“cholesterol metabolic process” (FDR=1.6×10-6). 16 

We expect that any eQTS analysis would yield the most informative genes if conducted 17 

in the trait-relevant tissue type. Still, in our blood data, we also identified eQTS 18 

associations for non-blood PGS, including with metabolite- and lipid-levels, 19 

anthropometric traits and several diseases such as asthma, celiac disease and coronary 20 

artery disease (Supplementary Results; Supplementary Figure 19A-C; 21 

Supplementary Table 20). 22 

For example, 11 out of the 26 eQTS genes that were associated with the PGS for high-23 

density lipoprotein levels (HDL51,52; FDR<0.05; 11 out of 26 were Bonferroni significant; 24 

Figure 6C) have previously been linked to lipid or cholesterol metabolism 25 
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(Supplementary Table 26). ABCA1 and ABCG1, which positively correlated with the 1 

PGS for high HDL (r=0.05-0.07 for both genes, r derived from Z-score, both Bonferroni 2 

significant), mediate the efflux of cholesterol from macrophage foam cells and participate 3 

in HDL formation. In macrophages, downregulation of both ABCA1 and ABCG1 reduces 4 

reverse cholesterol transport into the liver by HDL53 (Figure 6D). The PGS for high HDL 5 

was also negatively correlated with the expression of the low-density lipoprotein receptor 6 

LDLR (strongest eQTS P=3.35×10-20, r=0.06, r derived from Z-score), which is known to 7 

cause hypercholesterolemia54. Similarly, SREBF2, the gene encoding the TF SREBP-2, 8 

which is known to increase the expression of LDLR, was downregulated (strongest eQTS 9 

P=3.08×10-7 (not Bonferroni significant), r=0.03, r derived from Z-score). The negative 10 

correlation between SREBF2 expression and measured HDL levels has been described 11 

before15, indicating that the eQTS reflects an association with an actual phenotype. 12 

Zhernakova et al.15 proposed a model where down-regulation of SREBF2 results in lower 13 

expression of its target gene, FADS2. However, we did not observe an HDL eQTS effect 14 

on FADS2 (all eQTS P>0.07), possibly because the indirect effect was too small to detect. 15 

We hypothesize that higher blood HDL levels can result in stronger reverse cholesterol 16 

transport into the liver, which may result in downregulation of LDLR55. 17 
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 1 

Figure 6. eQTS analyses. (A) In trans-eQTL analysis, individual SNPs are associated with gene 2 

expression. (B) In eQTS analysis, the effect sizes and directions of individual trait-associated 3 

SNPs are combined into a polygenic score (PGS) that is associated with gene expression. Here, 4 

we outline the case where eQTS analysis identifies a gene not detectable in the trans-eQTL 5 

analysis. Other scenarios we observed include: Gene A also being identified by eQTS analysis, 6 

Gene B being identified by both methods, or the combined effect of PGS yielding no significant 7 

eQTS. (C) The PGS for high density lipoprotein (HDL) associates to lipid metabolism genes. (D) 8 
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The role of ABCA1, ABCG1, LDLR and SREBF2 in cholesterol transport. (E) Both trans-eQTLs 1 

and the serine PGS associate with the known serine biosynthesis genes PHGDH and PSAT1. (F) 2 

Serine biosynthesis pathway. 3 

eQTS can also identify pathways known to be associated with monogenic diseases. For 4 

example, the PGSs for serine, glycine, the glycine derivative N-acetylglycine and 5 

creatine56,57 were all negatively associated with the gene expression levels of PHGDH, 6 

PSAT1 and AARS (P<5.3×10-7, -0.05<r<-0.03; -0.08<r<-0.03; -0.05<r<-0.03, 7 

respectively, r derived from Z-score, not Bonferroni significant). The PGSs for these traits 8 

are driven by SNPs near CPS1 (2q34), PHGDH (1p12) and PSPH (7p11.2) 9 

(Supplementary Table 27) that influence expression of PHGDH and PSAT1 in trans. We 10 

nominally replicated these trans-eQTLs in scRNA-seq data (average |Z|>1.96 across 11 

tested cell types, part of the 729 trans-eQTLs; Supplementary Table 8, Figure 6E), 12 

indicating that this eQTS is indeed driven by multiple genetic loci, but independent of cell-13 

type composition. PHGDH and PSAT1 encode crucial enzymes that regulate the 14 

synthesis of serine and, in turn, glycine58, while N-acetylglycine and creatine form 15 

downstream of glycine59 (Figure 6F). Mutations in PSAT1 and PHGDH can result in 16 

serine biosynthesis defects including phosphoserine aminotransferase deficiency60, 17 

phosphoglycerate dehydrogenase deficiency61, and Neu-Laxova syndrome62, which are 18 

all characterized by low concentrations of serine and glycine in blood and severe neuronal 19 

manifestations. Unexpectedly, the PGS for higher levels of these amino acids was 20 

associated with lower expression of PHGDH, PSAT1 and AARS, implying the presence 21 

of a negative feedback loop that controls serine synthesis.  22 
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Discussion 1 

We performed cis-eQTL, trans-eQTL and eQTS analyses in 31,684 blood samples - a 2 

six-fold increase in sample size over earlier studies5,9. Of the genes expressed in blood, 3 

88.3% showed a cis-eQTL effect, 32% showed a trans-eQTL effect and 13% showed an 4 

eQTS effect. 5 

Most of the studies prioritizing genes for complex traits have considered only cis-eQTL 6 

effects and thus our catalogue of blood cis-eQTLs can be used to prioritize genes in 7 

genetic loci for various phenotypes. However, cis-eQTL effects have been estimated to 8 

explain only a limited fraction of the heritability of gene expression, while the combination 9 

of many weak trans-eQTL effects is estimated to explain the majority63, emphasizing the 10 

importance of distal effects. At the same time, the interpretation of trans-eQTLs in blood 11 

remains challenging: limited replication and the influence of cell composition suggest that 12 

the effects are highly cell-type-specific. Nevertheless, the replication analyses we carried 13 

out in PBMC scRNAs-seq data prioritized 729 trans-eQTLs, and more than half of the 14 

trans-eQTLs identified by our study were assigned a putative biological mechanism of 15 

action, with transcriptional regulation through TF activity being the most prevalent.  16 

To identify genes that are coordinately affected by multiple independent trait-associated 17 

SNPs, we performed eQTS analysis. By calculating PGSs at multiple GWAS significance 18 

thresholds, we included not only genome-wide significant SNPs but also SNPs reaching 19 

less stringent significance thresholds, potentially leading to additional information 20 

representing differences in polygenicity between traits. We identified eQTS associations 21 

for 2,568 genes and have outlined several examples where the associated genes point 22 

to interpretable biology. One possible interpretation of these eQTS associations is in the 23 

context of the recently proposed omnigenic model13,14. As explained by Liu et 24 
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al14, many weak distal effects could converge on the trait-relevant ‘core’ genes, and 1 

eQTS analysis might help to prioritise such genes (Supplementary Equations). 2 

However, an important limitation is that eQTS analysis can also identify genes which are 3 

merely co-regulated with the trait-relevant ones. Therefore, it remains challenging to 4 

systematically evaluate which fraction of the detected eQTS genes is actually causal. 5 

Whereas our analysis does not formally prove or disprove the validity of the model by Liu 6 

et al14, and the true implications of this model remain to be investigated, our results can 7 

serve as a future starting point to follow up on the identified eQTS genes and to ascertain 8 

their role in complex traits. To our knowledge, our eQTS analysis provides the first 9 

comprehensive resource in blood that can be used to interpret the effects of PGS on a 10 

molecular level. 11 

There are some important limitations that require consideration when using our resource 12 

for hypothesis generation. First, we limited our cis-eQTL analysis to variants within 1 Mb 13 

of the gene center, and limited our trans-eQTL analysis on variants >5 Mb from genes on 14 

the same chromosome. We acknowledge the possibility that these thresholds may have 15 

excluded discovery of distal cis-eQTLs (e.g. those caused by distal enhancers or 16 

chromatin loops), and trans-eQTLs on nearby genes. We chose these thresholds to 17 

ensure that the trans-eQTLs we observed were not driven by long-range cis-eQTLs. 18 

While our approach might have excluded long-range cis-eQTLs, we observed that for 19 

95.6% of genes, the lead cis-eQTL SNP maps within 100kb of the gene, suggesting that 20 

long-range cis-eQTLs reflect only a small proportion of all cis-eQTLs. Second, we 21 

confined our trans-eQTL analyses to a subset of 10,317 variants previously associated 22 

with complex phenotypes. As such, a significant trans-eQTL for a trait-associated variant 23 

does not necessarily mean that there is the same underlying variant affecting both the 24 

phenotype and gene expression. Third, PGS estimates have been shown to have variable 25 
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prediction accuracy even when evaluated within the same ancestry. This variability may 1 

be caused by differences in sample characteristics (e.g. age, sex, socio-economic status) 2 

in the original GWAS as well as the dataset in which the PGS is calculated48. Such 3 

variability may therefore have caused either inflation or deflation of our eQTS effect sizes. 4 

Although per-phenotype enrichment analyses for trans-eQTL and eQTS genes resulted 5 

in several examples of GO terms that were interpretable in the context of the respective 6 

traits, caution is needed when drawing conclusions on higher-level phenotypes. Instead, 7 

our resource should serve as a starting point for further in-depth studies that can reliably 8 

connect the reported eQTL and eQTS associations to phenotypes. 9 

Although putative biological mechanisms of action could be assigned to more than half of 10 

the trans-eQTLs we identified, significant replication in different scRNA-seq, purified cell 11 

type and cell line datasets was very limited. Such low replication rates suggest two likely 12 

causes. First, a number of the distal effects are likely driven by inter-individual blood-cell-13 

type composition differences, which occur in any bulk tissue. While such effects could be 14 

informative in the context of some complex traits (i.e. for autoimmune diseases), the most 15 

interesting information lies in the intracellular effects. Furthermore, while we corrected for 16 

unknown confounders in our analyses, some residual cell-type-composition effects 17 

remain in the data. Therefore, it was not possible to reliably distinguish cell-type-18 

dependent effects from intracellular ones. Instead we present a catalogue of blood eQTLs 19 

that should serve as a prioritised list for in-depth functional studies. 20 

Second, our discovery analyses were conducted in a sample >10 times larger than the 21 

largest replication datasets available. Because trans-eQTL effects are generally weak, 22 

this lack of statistical power is likely to cause low replication rates. Additionally, trans-23 

eQTL effects are widely considered to be more cell-type- and tissue-specific than local 24 

cis-eQTL effects17. Although this belief might be partly caused by variable eQTL strengths 25 
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in different tissue contexts and the limited power of current trans-eQTL studies, it would 1 

also lead to lower replication rates of blood trans-eQTLs in specific cell types.  2 

Compared to the gene expression from bulk tissues, scRNA-seq datasets are less likely 3 

to be affected by cell-type composition and currently serve as the best available source 4 

for replicating, prioritizing and annotating trans-eQTLs. While we have compiled, to the 5 

best of our knowledge, the largest available blood scRNA replication dataset, it was still 6 

only 3.6% of the sample size of the discovery study. It is therefore unsurprising that only 7 

35 trans-eQTLs reached the significance threshold (FDR<0.05). None-the-less, 84% of 8 

the 729 trans-eQTLs attaining nominal significance (P<0.05) also showed allelic 9 

concordance with our discovery analysis. This over-representation of concordant effects 10 

suggests that there are intracellular effects among our catalogue of trans-eQTL effects, 11 

even if comprehensive distinction of cell-type-composition and intracellular effects is not 12 

yet possible. Upcoming large-scale single cell eQTL studies64 (e.g. 13 

https://www.eqtlgen.org/single-cell.html), as well as highly-powered eQTL analyses 14 

conducted in non-blood tissues65 and cell lines, will be instrumental in distinguishing 15 

intracellular effects from cell-type composition.  16 

Full summary statistics for our cis-eQTL, trans-eQTL and eQTS studies are publicly 17 

available (www.eqtlgen.org) and can be used to interpret GWAS, to prioritize putative 18 

trait-related genes for in-depth functional studies and to develop new methods to perform 19 

those tasks. We envision that upcoming statistical tools and frameworks that will enable 20 

federated analyses in large consortia will make it possible to conduct highly powered 21 

global trans-eQTL studies. This will expand the work presented here and enable 22 

researchers to better connect distal effects on gene expression with complex phenotypes. 23 

 24 

https://www.eqtlgen.org/single-cell.html
http://www.eqtlgen.org/
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Methods 1 

Cohorts 2 

The eQTLGen Consortium data consists of 31,684 blood and peripheral blood 3 

mononuclear cell (PBMC) samples from 37 datasets, pre-processed in a standardized 4 

way and analyzed by each cohort analyst. 25,482 (80.4%) of the samples added to 5 

discovery analysis were whole blood samples and 6,202 (19.6%) were PBMCs, and the 6 

majority of samples were of European ancestry (Supplementary Table 1). The gene 7 

expression levels of the samples were profiled by the Illumina (N=17,421; 55%), 8 

Affymetrix U219 (N=2,767; 8.7%), and Affymetrix HuEx v1.0 ST (N=5,075; 16%) 9 

expression arrays and by RNA-seq (N=6,422; 20.3%). A summary of each dataset is 10 

outlined in Supplementary Table 1. Detailed cohort descriptions can be found in the 11 

Supplementary Information. All cohorts participating in this study enrolled participants 12 

with informed consent, collected and analyzed data in accordance with ethical and 13 

institutional regulations, and provided summary statistics for the meta-analyses. The 14 

information about individual institutional review board approvals is available in the original 15 

publications for each cohort (Supplementary Information) or in the cohort-specific 16 

Supplementary Information. 17 

Each of the cohorts carried out genotype and expression data pre-processing, PGS 18 

calculation and cis-eQTL-, trans-eQTL- and eQTS-mapping following the steps outlined 19 

in the online analysis plans, specific for each platform (see URLs), or with slight 20 

alterations as described in Supplementary Table 1 and the Supplementary 21 

Information. All but one cohort (Framingham Heart Study), included unrelated individuals 22 

into the analysis.  23 
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Information about replication datasets is detailed in the Supplementary Information. 1 

Genotype data preprocessing 2 

The primary pre-processing and quality control of genotype data was conducted by each 3 

cohort, as specified in the original publications and in the Supplementary Information. 4 

The majority of cohorts used genotypes imputed to 1kG p1v3 or a newer reference panel. 5 

GenotypeHarmonizer66 was used to harmonize all genotype datasets to match the GIANT 6 

1kG p1v3 ALL reference panel and to fix potential strand issues for A/T and C/G SNPs. 7 

Each cohort tested SNPs with MAF >0.01, Hardy-Weinberg P-value >0.0001, call rate 8 

>0.95, and MACH r2>0.5.  9 

Expression data preprocessing 10 

Illumina arrays 11 

Illumina array expression datasets were profiled by HT-12v3, HT-12v4 and HT-12v4 12 

WGDASL arrays. Before analysis, all the probe sequences from the manifest files of those 13 

platforms were re-mapped to GRCh37.p10 human genome and transcriptome using 14 

SHRiMP v2.2.3 aligner67 and allowing two mismatches. Probes mapping to multiple 15 

locations in the genome were removed from further analyses. 16 

For Illumina arrays, the raw unprocessed expression matrix was exported from 17 

GenomeStudio. Before any pre-processing, the first two PCs were calculated on the 18 

expression data and plotted to identify and exclude outlier samples. The data was 19 

normalized in several steps: quantile normalization, log2 transformation, probe centering 20 

and scaling by the equation ExpressionProbe,Sample = (ExpressionProbe,Sample - MeanProbe) / 21 
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Std.Dev.Probe. Genes showing no variance were removed. Next, the first four 1 

multidimensional scaling (MDS) components, calculated based on non-imputed and 2 

pruned genotypes using plink v1.0768, were regressed out of the expression matrix to 3 

account for population stratification. We further removed up to 20 of the first expression-4 

based PCs that were not associated with any SNPs, as these capture non-genetic 5 

variation in expression. After regressing out these covariates, the residual gene 6 

expression matrix was used for eQTL mapping. Each cohort also ran MixupMapper69 7 

software to identify incorrectly labeled genotype–expression combinations, and remove 8 

identified sample mix-ups. 9 

Affymetrix arrays 10 

Affymetrix-array-based datasets used expression data previously pre-processed and 11 

quality controlled as indicated in the Supplementary Information. 12 

RNA-seq 13 

Alignment, initial quality control and quantification differed slightly across datasets, as 14 

described in the Supplementary Information. Each cohort removed outliers as 15 

described above, and then used Trimmed Mean of M-values normalization70 and a counts 16 

per million (CPM) filter to include genes with >0.5 CPM in at least 1% of the samples. 17 

Subsequent steps were identical to the Illumina processing, with some exceptions for the 18 

BIOS Consortium datasets (Supplementary Information). For BIOS Consortium 19 

datasets, up to 25 of the first expression PCs that were not associated with any SNPs 20 

were removed instead of 20. 21 
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Empirical probe matching 1 

To integrate the different expression platforms (four different Illumina array models, RNA-2 

seq, Affymetrix U219 and Affymetrix Hu-Ex v1.0 ST) for the purpose of meta-analysis, we 3 

developed an empirical probe-matching approach. We used the pruned set of SNPs to 4 

conduct per-platform meta-analyses for all Illumina arrays, for all RNA-seq datasets, and 5 

for each Affymetrix dataset separately, using summary statistics from analyses without 6 

any gene expression correction for PCs. For each platform, this yielded an empirical 7 

trans-eQTL Z-score matrix, as well as 10 permuted Z-score matrices in which links 8 

between genotype and expression files were permuted. These permuted Z-score 9 

matrices reflect the gene–gene or probe–probe correlation structure. 10 

We used RNA-seq permuted Z-score matrices as a gold standard reference and 11 

calculated, for each gene, the Pearson correlation coefficients with all the other genes, 12 

yielding a correlation profile for each gene. We then repeated the same analysis for the 13 

Illumina meta-analysis and the two different Affymetrix platforms. Finally, we correlated 14 

the correlation profiles from each array platform with the correlation profiles from RNA-15 

seq. For each array platform, we selected the probe showing the highest Pearson 16 

correlation with the corresponding gene in the RNA-seq data and treated those as 17 

matching expression features in the combined meta-analyses. This yielded 19,942 genes 18 

that were detected in RNA-seq datasets and tested in the combined meta-analyses. 19 

Genes and probes were matched to Ensembl v7171 (see URLs) stable gene IDs and 20 

HGNC symbols in all the analyses. 21 
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Meta-analysis procedure 1 

The results presented in this study were meta-analyzed using a weighted Z-score 2 

method72, where the Z-scores are weighted by the square root of the sample size of the 3 

cohort. For cis-eQTL and trans-eQTL meta-analyses, this resulted in a final sample size 4 

of up to 31,684. The combined eQTS meta-analysis included the subset of unrelated 5 

individuals from the Framingham Heart Study, resulting in a combined sample size of up 6 

to 28,158. Considering that our analysis contained many different gene expression and 7 

genotyping platforms, we limited our meta-analysis to associations present in at least two 8 

cohorts in order to reduce platform-specific effects. Specifics for each meta-analysis (cis-9 

eQTL, trans-eQTL, eQTS) are detailed below. 10 

Cross-platform replications 11 

To test the performance of the empirical probe-matching approach, we conducted 12 

discovery cis-, trans- and eQTS meta-analyses for each expression platform (RNA-seq, 13 

Illumina, Affymetrix U219 and Affymetrix Hu-Ex v1.0 ST arrays; array probes matched to 14 

19,942 genes by empirical probe matching). For each discovery analysis, we conducted 15 

replication analyses in the three remaining platforms, observing strong replication of both 16 

cis-eQTLs, trans-eQTLs and eQTS in the different platforms with very good concordance 17 

in allelic direction. 18 

Quality control of the meta-analyses 19 

For quality control of the overall meta-analysis results, MAFs for all tested SNPs were 20 

compared between eQTLGen and 1kG p1v3 EUR (Supplementary Figure 20), and the 21 
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effect direction of each dataset was compared against the meta-analyzed effect 1 

(Supplementary Figure 21A-C). 2 

Cis-eQTL mapping 3 

Cis-eQTL mapping was performed in each cohort using a pipeline described previously5. 4 

In brief, the pipeline takes a window of 1 Mb upstream and 1 Mb downstream around 5 

each SNP to select genes or expression probes to test, based on the center position of 6 

the gene or probe. The associations between these SNP–gene combinations are then 7 

calculated using Spearman correlation. Next, every cohort performed 10 permutations. In 8 

each permutation, the links between genotype and expression identifiers were shuffled 9 

prior to re-calculating all associations. Both the non-permuted results and each round of 10 

permuted results were then meta-analyzed over cohorts.  11 

Multiple testing correction for cis-eQTL mapping 12 

For our multiple testing procedure, we used the meta-analyzed permutations across all 13 

cohorts to calculate the overall FDR, as previously described5. In short, we reasoned that 14 

the large numbers of correlated SNPs and genes present in the cis-eQTL results might 15 

cause inflated estimates (i.e. highly correlated SNPs associated with a specific gene 16 

would result in equal permuted P-values for that particular gene). To circumvent this 17 

issue, we first selected the lowest association P-value per gene in both the permuted and 18 

non-permuted meta-analyses. The resulting lists of P-values were then sorted and, per 19 

given P-value in the non-permuted data, we determined the proportion of P-values equal 20 

to or below this value in both the permuted and non-permuted data. We then determined 21 

our FDR estimate as the proportion of permuted P-values over the proportion of non-22 

permuted P-values. If a specific eQTL from the full set was not among the set of per-gene 23 
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lowest association P-values, this eQTL was assigned the higher FDR value 1 

corresponding to the next eQTL available among the set of lead variants per gene. We 2 

refer to this procedure as ‘gene-level’ FDR, but note that the FDR estimates should be 3 

evaluated as ‘analysis-wide’, since the ultimate distribution of permuted P-values used to 4 

calculate our FDR estimates was derived for all tested genes, rather than per-gene. Cis-5 

eQTLs with a gene-level FDR<0.05 (corresponding to P<2.02×10-5) that were tested in 6 

more than one cohort were deemed significant. 7 

Trans-eQTL mapping 8 

Trans-eQTL mapping was performed using a previously described pipeline5 while testing 9 

a subset of 10,317 SNPs associated with complex traits. We required the distance 10 

between the SNP and the center of the gene or probe to be >5 Mb. To maximize the 11 

power to identify trans-eQTL effects, the results of the summary-statistics-based or 12 

iterative conditional cis-eQTL mapping analyses (Supplementary Methods) were used 13 

to correct the expression matrices before trans-eQTL mapping. For that, lead SNPs for 14 

significant (FDR<0.05) conditional cis-eQTLs were regressed out from the expression 15 

matrix. Finally, we removed potential false positive trans-eQTLs caused by reads cross-16 

mapping with cis regions (Supplementary Methods). 17 

Genetic risk factor selection 18 

Genetic risk factors were downloaded from three public repositories: the EBI GWAS 19 

Catalog73 (downloaded 21 November 2016), the NIH GWAS Catalogue and Immunobase 20 

(www.immunobase.org; accessed 26 April 2016), applying a significance threshold of 21 

P≤5×10-8. Additionally, we added 2,706 genome-wide significant GWAS SNPs from a 22 

http://www.immunobase.org/
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recent blood trait GWAS23. SNP coordinates were lifted to hg19 using the liftOver 1 

command from R package rtracklayer v1.34.174  and subsequently standardized to match 2 

the GIANT 1kG p1v3 ALL reference panel. This yielded 10,562 SNPs (Supplementary 3 

Table 2). We tested associations between all risk factors and genes that were at least 5 4 

Mb away to ensure that that they did not tag a cis-eQTL effect. In total, 10,317 trait-5 

associated SNPs were tested in trans-eQTL analyses. 6 

Conditional trans-eQTL analyses 7 

We aimed to estimate how many trans-eQTL SNPs were likely to drive both the trans-8 

eQTL effect and the GWAS phenotype. The workflow of this analysis is shown in 9 

Supplementary Figure 11. We used the discovery trans-eQTL analysis results as an 10 

input, confined ourselves to those effects that were present in the datasets we had direct 11 

access to (BBMRI-BIOS+EGCUT; N=4,339), and showed nominal P<8.3×10-06 in the 12 

meta-analysis of those datasets. This P-value threshold was the same as in the full 13 

combined trans-eQTL meta-analysis and was based on the FDR=0.05 significance 14 

threshold identified from the analysis run on the pruned set of GWAS SNPs after removal 15 

of cross-mapping effects. We used the same methods and SNP filters as in the full 16 

combined trans-eQTL meta-analysis, aside from the FDR calculation, which was based 17 

on the full set of SNPs instead of the pruned set of SNPs.  18 

For each significant trans-eQTL SNP (FDR<0.05), we defined the locus by adding a ±1 19 

Mb window around it. Next, for each trans-eQTL gene, we ran iterative conditional trans-20 

eQTL analysis using all loci for a given trans-eQTL gene. We then evaluated the LD 21 

between all conditional lead trans-eQTL SNPs and lead cis-eQTL SNPs using a 1 Mb 22 

window and R2>0.8 (1kG p1v3 EUR) as a threshold for LD overlap. 23 
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cis-eQTL - trans-eQTL interaction analyses 1 

We aimed to identify local cis-eQTL genes that affect the trans-eQTL effect by changing 2 

its strength or direction and might therefore serve as potential mediators. We used a G × 3 

E interaction model to test this:  4 

t = 𝛽𝛽0 + 𝛽𝛽1 × s + 𝛽𝛽2 × m + 𝛽𝛽3 × s × m 5 

where t is the expression of the trans-eQTL gene, s is the trans-eQTL SNP, and m is the 6 

expression of a potential mediator gene within 100kb of the trans-eQTL SNP. We omitted 7 

trans-eQTL SNP locating to HLA region from those analyses because of the complex 8 

structure of this region. On top of the gene expression normalization that we used for 9 

discovery analyses, we used a rank-based inverse normal transformation to enforce a 10 

normal distribution before fitting the linear model. This is identical to the normalization 11 

used by Zhernakova et al15 in their G × E interaction eQTL analyses. We fitted this model 12 

separately to each of the cohorts that are part of the BIOS consortium and to EGCUT. 13 

We transformed the interaction P-values to Z-scores and used the weighted Z-score 14 

method72 to perform a meta-analysis of 4,339 samples. The Benjamini-Hochberg 15 

procedure18 was used to limit the FDR to 0.05. The plots in Supplementary Figure 13 16 

were created with the default normalization, and the regression lines are the best-fitting 17 

lines between the mediator gene and the trans-eQTL gene, stratified by genotype. 18 

eQTS mapping 19 

PGS trait inclusion 20 

Full association summary statistics were downloaded from several publicly available 21 

resources (Supplementary Table 19). Based on the information presented on the web 22 
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sites or abstracts of corresponding publications, GWAS performed exclusively in non-1 

European cohorts were omitted. Filters applied to the separate data sources are indicated 2 

in the Supplementary Information. All the dbSNP rs numbers were standardized to 3 

match GIANT 1kG p1v3, and the directions of effects were standardized to correspond to 4 

the GIANT 1kG p1v3 minor allele. SNPs with opposite alleles compared to GIANT alleles 5 

were flipped. SNPs with A/T and C/G alleles, tri-allelic SNPs, indels, SNPs with different 6 

alleles in GIANT 1kG p1v3 and SNPs with unknown alleles were removed from the 7 

analysis. Genomic control was applied to all the P-values for the datasets not genotyped 8 

by Immunochip or Metabochip. Additionally, genomic control was skipped for one dataset 9 

that did not have full associations available75 and for all the datasets from the GIANT 10 

consortium because genomic control had already been applied for these. In total, 1,263 11 

summary statistics files were added to the analysis. Information about the summary 12 

statistics files can be found in the Supplementary Information and Supplementary 13 

Table 19. 14 

PGS calculation 15 

A custom Java program, GeneticRiskScoreCalculator-v0.1.0c, was used for calculating 16 

several PGS in parallel. Independent effect SNPs for each summary statistics file were 17 

identified by double-clumping, first using a 250kb window and then subsequently a 10Mb 18 

window with an LD threshold R2=0.1. Weighted PGS were calculated by summing the risk 19 

alleles for each independent SNP, weighted by its GWAS effect size (beta or log(OR) 20 

from the GWAS study). Five GWAS P-value thresholds (P<5×10-8, 1×10-5, 1×10-4, 1×10-21 

3 and 1×10-2) were used for constructing PGSs for each summary statistics file. PGS were 22 

scaled to fall between 0 and 2, for compatibility with QTL mapping pipeline. 23 
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Pruning SNPs and PGSs 1 

To identify a set of independent genetic risk factors, we conducted LD-based pruning as 2 

implemented in PLINK 1.976 with the setting --indep-pairwise 50 5 0.1. This yielded 4,586 3 

uncorrelated SNPs (R2<0.1, GIANT 1kG p1v3 ALL). 4 

To identify the set of uncorrelated PGS, 10 permuted trans-eQTL Z-score matrices from 5 

the combined trans-eQTL analysis were first confined to the pruned set of SNPs. Those 6 

matrices were then used to identify 3,042 uncorrelated genes based on Z-score 7 

correlations (absolute Pearson R<0.05). Next, permuted eQTS Z-score matrices were 8 

confined to uncorrelated genes and used to calculate pairwise correlations between all 9 

genetic risk scores to define a set of 1,873 uncorrelated genetic risk scores (Pearson 10 

R2<0.1). 11 

Multiple testing correction in trans-eQTL and eQTS mapping 12 

To calculate FDR estimates for trans-eQTLs and eQTS, we compared each P-value from 13 

the non-permuted meta-analysis with all P-values from 10 meta-analyzed permutation 14 

rounds. We note that this differs from the permutation strategy used in the cis-eQTL 15 

analysis, because here we used the P-values from all SNP-gene combinations, not just 16 

the smallest P-value for each gene. Nevertheless, we note that the 10,317 SNPs tested 17 

for trans-eQTLs contained many linked variants. To establish a conservative FDR 18 

estimate, we therefore first pruned this list of variants, leaving 4,586 SNPs. Using this list 19 

of SNPs, we then performed a focused meta-analysis for both the non-permuted and 20 

permuted datasets. We derived FDR estimates from these limited meta-analyses by 21 

sorting the resultant lists of P-values and determining the proportion of P-values in the 22 

non-permuted and permuted datasets for each given P-value in the non-permuted 23 
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dataset. We then applied these FDR estimates to the trans-eQTL results from all 10,317 1 

genetic trait-associated SNPs. If a specific eQTL from the full set was not tested in the 2 

meta-analysis conducted on the pruned set, this eQTL was assigned the higher FDR 3 

value corresponding to the next eQTL tested in the pruned set. We used an FDR 4 

threshold of 0.05 to declare a trans-eQTL effect significant. Similarly, in the eQTS 5 

analysis, we used a set of 1,873 uncorrelated (Pearson R2<0.1) PGSs and performed an 6 

analogous FDR calculation. We analyzed only SNP/PGS–gene pairs tested in at least 7 

two cohorts. 8 

Replication of trans-eQTL and eQTS effects in cell lines and 9 

purified cell types 10 

Information about replication cohorts and their respective settings for replication analyses 11 

is outlined in the Supplementary Information. If applicable, summary statistics from 12 

different replication datasets for the same specific cell type or tissue were meta-analysed 13 

using a weighted Z-score method72. Benjamini-Hochberg FDR18 was used to adjust 14 

replication analysis P-values for multiple testing. We required FDR<0.05 and the same 15 

effect direction with discovery to declare effect replicating. R package pwr (URLs) was 16 

used to conduct power analyses for replication datasets. 17 

Cell-type-composition effects of trans-eQTLs and eQTS 18 

Dataset 19 

We used data from a subset 3,831 BIOS individuals to which we had direct access. We 20 

further narrowed our sample set down to 1,858 individuals for whom the measured cell 21 
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metric data was available for at least ⅔ of measured cell metrics. All samples were part 1 

of discovery meta-analyses. 2 

Measured cell metrics 3 

Several cell types were counted in peripheral blood from each of the BIOS cohort 4 

participants, but cohorts differed in the availability. Cells were counted as an absolute 5 

number in a liter of blood (white blood cell count, red blood cell count, platelet count), or 6 

as a percentage of the white blood cell count (neutrophil percentage, lymphocyte 7 

percentage, etc.). Out of 24 cell metrics, we excluded eight (LUC, LUC%, RBC, RDW, 8 

MCH, MPV, MCHC, MCV) because these measurements were not available for the large 9 

majority of samples, hindering the estimation of the combined effect of measured cell 10 

metrics on trans-eQTLs and eQTS. All measured cell metrics are summarized in 11 

Supplementary Table 28. 12 

Estimated cell counts 13 

We estimated the cell counts of 33 different cell types using Decon-cell, part of the 14 

Decon2 method77. Decon-cell was trained using information from the independent 500FG 15 

cohort, which includes detailed cell type measures as well as RNA-seq expression 16 

profiles78. Next, the prediction model was used to impute cell proportions based on the 17 

BIOS gene expression matrix. Predicted cell metrics are summarized in Supplementary 18 

Table 28. 19 
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Cell type interaction analyses 1 

Here we used data from a subset of up to 1,858 BIOS Consortium samples for which 49 2 

measured and predicted cell type metrics were available. For these analyses we tested 3 

only effects where the SNP had a MAF>0.05 in each BIOS cohort. 4 

All 49 cell metrics were transformed by inverse normal transformation prior to analyses. 5 

For gene expression, we used the same preprocessing as in the discovery meta-6 

analyses, including correction for expression PCs and regression of cis-eQTL effects. In 7 

addition to the standard preprocessing, the expression of each gene was transformed 8 

using inverse normal transformation. 9 

For multivariate linear models, analyses were conducted using R v3.4.4, data.table v1.12, 10 

tidyverse v1.2.1, broom v0.5.1 and the pheatmap v1.0.12 packages (URLs). For each 11 

BIOS cohort, linear models were fitted for each trans-eQTL identified in meta-analysis 12 

(FDR<0.05), using lm() function from R. For eQTS analyses, PGS was used instead of 13 

SNP. 14 

Three different interaction models were fitted for each trans-eQTL and eQTS: 15 
 16 
t = 𝛽𝛽0 + 𝛽𝛽1 × s 17 
t = 𝛽𝛽0 + 𝛽𝛽1 × c1 + 𝛽𝛽2 × c2 + … + 𝛽𝛽49 × c49 + 𝛽𝛽50 × s 18 
t = 𝛽𝛽0 + 𝛽𝛽1 × c1 + 𝛽𝛽2 × c2 + … + 𝛽𝛽49 × c49 + 𝛽𝛽50 × c1 × s + … + 𝛽𝛽99 × c49 × s + 𝛽𝛽100 × s 19 
 20 
where t is the expression of trans-eQTL/eQTS gene, c is cell-type metric, and s is a 21 

dosage of trans-eQTL SNP or scaled value of polygenic score. P-values from each term 22 

of the linear model (main effects and interaction effects) were converted to signed Z-23 

scores and effects were meta-analyzed by weighted Z-score method, using the square 24 

root of per-cohort sample size as weight. 25 
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To determine the effect of cell-type composition on trans-eQTLs, we applied models and 1 

assessed the SNP main effect. Here we used the same significance thresholds as 2 

determined by the permutation-based FDR in the discovery meta-analyses. 3 

To determine the likely cell types where trans-eQTLs or eQTSs can manifest, we applied 4 

the third model with the difference that no PCs were removed from gene expression data 5 

prior to analysis and queried the individual interaction term for each cell metric. A 6 

Benjamini-Hochberg FDR18 across all interaction P-values was used to determine 7 

significance in this analysis. 8 

scRNA-seq analyses 9 

scRNA-seq cohorts and data 10 

For the replication of trans-eQTLs in scRNA-seq, we used unpublished data of PBMCs 11 

from 1,139 unrelated individuals in two cohorts generated using the 10X Chromium 12 

platform: OneK1K (N=982) and 1M-scBloodNL (N=157). The data was processed using 13 

the Cell Ranger Single Cell Software Suite (see URLs) and aligned using STAR79. Cells 14 

were demultiplexed and doublets removed before performing cell type classification. We 15 

combined the data in a meta-analysis within each of the eight available cell types: B-cells, 16 

CD4+ T-cells, CD8+ T-cells, classical monocytes, non-classical monocytes, dendritic 17 

cells, natural killer cells and plasma cells.  18 

Replication of trans-eQTL effects 19 

We tested the replication of the 59,786 discovery trans-eQTLs only if the trans-eQTL gene 20 

was sufficiently expressed (i.e. had a missing sample fraction that was at most 20% in 21 

the large OneK1K dataset), leaving between 1,917 and 27,582 eQTLs to be studied, 22 

depending on cell type. We estimated the inflation of signal by calculating the lambda 23 
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inflation relative to the inverse chi-square cumulative distribution function of 0.5. Trans-1 

eQTLs with FDR<0.05 in any cell type were deemed significantly replicating. To get a 2 

better idea of replication across cell types, we calculated the average Z-score across cell 3 

types. We selected effects with an absolute average Z-score>1.96 (equivalent to P<0.05) 4 

to calculate the allelic concordance with the discovery trans-eQTLs. 5 

Correlation of trans-eQTL effects 6 

To test the correlation of trans-eQTL effects, we used the rb approach25, which accounts 7 

for the errors in the estimated eQTL effects so that the estimate of correlation is less 8 

dependent on sample sizes. First, we derived the estimate of the trans-eQTL effect (beta) 9 

and the standard error of the beta (SE(beta)) from the Z-score and the MAF of the 10 

significant trans-eQTLs, using the following formulae from Zhu et al., 201680  11 

beta = z / (√(2p(1-p)(n+z2)) 12 

SE(beta) = 1 / (√(2p(1-p)(n+z2)) 13 

where p is the MAF, n is the sample size and z is the meta-analysis Z-score. MAF was 14 

computed from 26,609 eQTLGen samples (excluding FHS) for discovery analysis and 15 

from 1,309 replication samples for scRNA-seq replication analyses. For analyses in 16 

purified cell types and cell lines (LCL, iPSC) where allele frequencies were not available, 17 

we used the MAF as observed in eQTLGen instead. 18 

In order to include independent effects in the analysis, for each trans-eQTL gene, we 19 

included only the strongest significant discovery effect in each 2 Mb window. Statistics of 20 

rb and SE(rb) were calculated as detailed in25 assuming no sample overlap between 21 

discovery and replication datasets. Because we were only seeking to correlate the effects 22 

of identified trans-eQTLs, we did not use any reference discovery dataset for selecting 23 
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trans-eQTLs to estimate rb, and hence did not consider potential ascertainment bias, 1 

although such bias is likely to be small. To calculate a P-value, the Z-score was first 2 

calculated by dividing rb by SE(rb) and then squared to calculate the 𝛘𝛘2 statistic. The P-3 

value was then derived from the 𝛘𝛘2 distribution with one degree of freedom. 4 

TF and tissue enrichment analyses for REST locus 5 

We downloaded curated sets of known TF-targets and tissue-expressed genes from the 6 

Enrichr website81,82. TF-target gene sets included TF-targets as assayed by ChIP-X 7 

experiments from the ChEA83 and ENCODE39,40 projects. Tissue-expressed genes were 8 

based on the ARCHS4 database84. Gene sets were processed and mapped to entrez IDs 9 

with R package ClusterProfiler v3.10.185. Those gene sets were then used to conduct 10 

over-representation analyses by one-sided Fisher’s exact test as implemented into the R 11 

package GeneOverlap v1.18.0 (see URLs).  12 

Trans-eQTL enrichment analyses 13 

To better understand the biological mechanisms underlying the trans-eQTLs, we 14 

performed a number of enrichment analyses. We converted trans-eQTLs to a gene-by-15 

gene matrix via three methods: using Pascal, using cis-eQTL information and combining 16 

both (Supplementary Methods). For the enrichments, we calculated whether there was 17 

significant overlap with known TF–target pairs27; gene co-regulation patterns 18 

(Supplementary Methods); PPIs29 and Hi-C contacts in LCL cells31 using a two-sided 19 

Fisher’s exact test. 20 
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Capture Hi-C overlap for cis-eQTLs 1 

To assess whether cis-eQTL lead SNPs overlapped with chromosomal contact as 2 

measured by Hi-C data, we used promoter capture Hi-C data86 downloaded from CHiCP87 3 

(see URLs). We took the lead eQTL SNPs, overlapped these with the capture Hi-C data, 4 

and studied the 10,428 cis-eQTL genes for which this data was available. We then 5 

checked whether the capture Hi-C target maps within 5kb of the lead SNP. Of the 803 6 

cis-eQTL genes for which the lead SNP mapped more than 100 kb away from the TSS 7 

or TES, 223 overlapped with capture Hi-C data (27.8%). Of 9,625 cis-eQTL genes for 8 

which the lead SNP mapped within 100kb from the TSS or TES, 1,641 overlapped with 9 

capture Hi-C data (17.0%). To test if these observed overlaps were not happening by 10 

chance, we performed the same analysis while flipping the location of the capture Hi-C 11 

target relative to the location of the bait. To test the difference between observed Hi-C 12 

overlap compared to flipped analysis, we used a two-tailed two-sample test of equal 13 

proportions.  14 
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Data availability 1 

Primary genotype and gene expression data was analyzed by individual cohorts 2 

participating in the study and current study analyzed summary statistics. Full summary 3 

statistics of the eQTLGen cis-eQTL, trans-eQTL and eQTS meta-analyses are available 4 

on the eQTLGen website, www.eqtlgen.org, which was built using the MOLGENIS 5 

framework88. We also provide cis-eQTL files formatted for use in SMR, MAFs, and 6 

replication statistics for cis-eQTLs, trans-eQTLs and eQTS. 7 

Code availability 8 

Individual cohorts participating in the study followed the analysis plans as specified in the 9 

URLs or with slight alterations as described in the Methods and Supplementary 10 

Information. All tools and source codes used for genotype harmonization, identification 11 

of sample mix-ups, eQTL mapping, meta-analyses and calculation of PGS are freely 12 

available at https://github.com/molgenis/systemsgenetics/. 13 
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