486 research outputs found

    Structural characterization of CspZ, a complement regulator factor H and FHL-1 binding protein from Borrelia burgdorferi

    Get PDF
    Borrelia burgdorferi is the causative agent of Lyme disease and is found in two different types of hosts in nature - Ixodes ticks and various mammalian organisms. To initiate disease and survive in mammalian host organisms, B. burgdorferi must be able to transfer to a new host, proliferate, attach to different tissue and resist the immune response. To resist the host's immune response, B. burgdorferi produces at least five different outer surface proteins that can bind complement regulator factor H (CFH) and/or factor H-like protein 1 (CFHL-1). The crystal structures of two uniquely folded complement binding proteins, which belong to two distinct gene families and are not found in other bacteria, have been previously described. The crystal structure of the CFH and CFHL-1 binding protein CspZ (also known as BbCRASP-2 or BBH06) from B. burgdorferi, which belongs to a third gene family, is reported in this study. The structure reveals that the overall fold is different from the known structures of the other complement binding proteins in B. burgdorferi or other bacteria; this structure does not resemble the fold of any known protein deposited in the Protein Data Bank. The N-terminal part of the CspZ protein forms a four-helix bundle and has features similar to the FAT domain (focal adhesion targeting domain) and a related domain found in the vinculin/α-catenin family. By combining our findings from the crystal structure of CspZ with previous mutagenesis studies, we have identified a likely binding surface on CspZ for CFH and CFHL-1.publishersversionPeer reviewe

    Borrelia recurrentis employs a novel multifunctional surface protein with anti-complement, anti-opsonic and invasive potential to escape innate immunity

    Get PDF
    Borrelia recurrentis, the etiologic agent of louse-borne relapsing fever in humans, has evolved strategies, including antigenic variation, to evade immune defence, thereby causing severe diseases with high mortality rates. Here we identify for the first time a multifunctional surface lipoprotein of B. recurrentis, termed HcpA, and demonstrate that it binds human complement regulators, Factor H, CFHR-1, and simultaneously, the host protease plasminogen. Cell surface bound factor H was found to retain its activity and to confer resistance to complement attack. Moreover, ectopic expression of HcpA in a B. burgdorferi B313 strain, deficient in Factor H binding proteins, protected the transformed spirochetes from complement-mediated killing. Furthermore, HcpA-bound plasminogen/plasmin endows B. recurrentis with the potential to resist opsonization and to degrade extracellular matrix components. Together, the present study underscores the high virulence potential of B. recurrentis. The elucidation of the molecular basis underlying the versatile strategies of B. recurrentis to escape innate immunity and to persist in human tissues, including the brain, may help to understand the pathological processes underlying louse-borne relapsing fever

    On absolutely and simply popular rankings

    Full text link
    Van Zuylen et al. introduced the notion of a popular ranking in a voting context, where each voter submits a strictly-ordered list of all candidates. A popular ranking π\pi of the candidates is at least as good as any other ranking σ\sigma in the following sense: if we compare π\pi to σ\sigma, at least half of all voters will always weakly prefer~π\pi. Whether a voter prefers one ranking to another is calculated based on the Kendall distance. A more traditional definition of popularity -- as applied to popular matchings, a well-established topic in computational social choice -- is stricter, because it requires at least half of the voters \emph{who are not indifferent between π\pi and σ\sigma} to prefer~π\pi. In this paper, we derive structural and algorithmic results in both settings, also improving upon the results by van Zuylen et al. We also point out strong connections to the famous open problem of finding a Kemeny consensus with 3 voters.Comment: full version of the AAMAS 2021 extended abstract 'On weakly and strongly popular rankings

    Borrelia valaisiana resist complement-mediated killing independently of the recruitment of immune regulators and inactivation of complement components

    Get PDF
    Spirochetes belonging to the Borrelia (B.) burgdorferi sensu lato complex differ in their resistance to complement-mediated killing, particularly in regard to human serum. In the present study, we elucidate the serum and complement susceptibility of B. valaisiana, a genospecies with the potential to cause Lyme disease in Europe as well as in Asia. Among the investigated isolates, growth of ZWU3 Ny3 was not affected while growth of VS116 and Bv9 was strongly inhibited in the presence of 50% human serum. Analyzing complement activation, complement components C3, C4 and C6 were deposited on the surface of isolates VS116 and Bv9, and similarly the membrane attack complex was formed on their surface. In contrast, no surface-deposited components and no aberrations in cell morphology were detected for serum-resistant ZWU3 Ny3. While further investigating the protective role of bound complement regulators in mediating complement resistance, we discovered that none of the B. valaisiana isolates analyzed bound complement regulators Factor H, Factor H-like protein 1, C4b binding protein or C1 esterase inhibitor. In addition, B. valaisiana also lacked intrinsic proteolytic activity to degrade complement components C3, C3b, C4, C4b, and C5. Taken together, these findings suggest that certain B. valaisiana isolates differ in their capability to resist complement-mediating killing by human serum. The molecular mechanism utilized by B. valaisiana to inhibit bacteriolysis appears not to involve binding of the key host complement regulators of the alternative, classical, and lectin pathways as already known for serum-resistant Lyme disease or relapsing fever borreliae

    Staphylococcus aureus proteins Sbi and Efb recruit human plasmin to degrade complement C3 and C3b

    Get PDF
    Upon host infection, the human pathogenic microbe Staphylococcus aureus (S. aureus) immediately faces innate immune reactions such as the activated complement system. Here, a novel innate immune evasion strategy of S. aureus is described. The staphylococcal proteins surface immunoglobulin-binding protein (Sbi) and extracellular fibrinogen-binding protein (Efb) bind C3/C3b simultaneously with plasminogen. Bound plasminogen is converted by bacterial activator staphylokinase or by host-specific urokinase-type plasminogen activator to plasmin, which in turn leads to degradation of complement C3 and C3b. Efb and to a lesser extend Sbi enhance plasmin cleavage of C3/C3b, an effect which is explained by a conformational change in C3/C3b induced by Sbi and Efb. Furthermore, bound plasmin also degrades C3a, which exerts anaphylatoxic and antimicrobial activities. Thus, S. aureus Sbi and Efb comprise platforms to recruit plasmin(ogen) together with C3 and its activation product C3b for efficient degradation of these complement components in the local microbial environment and to protect S. aureus from host innate immune reactions

    Do “one-size” employment policies fit all young workers? Heterogeneity in work attribute preferences among the Millennial generation

    Get PDF
    There has been a stream of research that explores how the present generation of workers (i.e., Millennials) may be different from previous generations (e.g., Baby Boomers and Gen Xers). This line of research often considers Millennials as homogeneous and concludes any differences to be “generational effects.” However, it is unlikely for a generation, which spans almost 20 years, to be uniformly homogeneous with respect to their work values and attitudes. Findings on generational differences conducted in the United States are also often generalized to other countries, ignoring the potential for national influences. In this regard, we apply a multi-method approach using three samples to demonstrate that there are differences within the Millennial generation that affect work values, preferences for work/life balance, and attraction to employer attributes. Specifically, we focus on the heterogeneity resulting from differences in age, gender, relationship status, and nationality. Our results suggest that Millennials are not as homogeneous as we assumed, and this can limit the effectiveness of managerial policies designed to improve individual and work outcomes for an entire generation of workers. Our study demonstrates that it is important for us to understand how individual, relational, and contextual factors may contribute to the heterogeneity within a generation

    Intestinal Epithelial Organoids as Tools to Study Epigenetics in Gut Health and Disease.

    Get PDF
    The intestinal epithelium forms the inner layer of the human intestine and serves a wide range of diverse functions. Its constant exposure to a vast amount of complex microbiota highlights the critical interface that this single-cell layer forms between the host and our environment. Importantly, the well-documented contribution of environmental factors towards the functional development of the human intestinal epithelium directly implies epigenetic mechanisms in orchestrating this complex interplay. The development of intestinal epithelial organoid culture systems that can be generated from human tissue provides researchers with unpresented opportunities to study functional aspects of human intestinal epithelial pathophysiology. In this brief review, we summarise existing evidence for the role of epigenetics in regulating intestinal epithelial cell function and highlight the great potential for human gut organoids as translational research tools to investigate these mechanisms in vitro.Peer Reviewe

    Crystal structure of the membrane attack complex assembly inhibitor BGA71 from the Lyme disease agent Borrelia bavariensis

    Get PDF
    Funding Information: This work was supported by the European Regional Development Fund (ERDF) grant Nr. 1.1.1.2/VIAA/1/16/144 “Structural and functional studies of Lyme disease agent Borrelia burgdorferi outer surface proteins to reveal the mechanisms of pathogenesis with the intention to create a new vaccine”. Diffraction data have been collected on BL14.1 at the BESSY II electron storage ring operated by the Helmholtz-Zentrum, Berlin. We would particularly like to acknowledge the help and support of Manfred S. Weiss and Christian Feiler during the experiment. Publisher Copyright: © 2018, The Author(s).Borrelia (B.) bavariensis, B. burgdorferi, B. afzelii, B. garinii, B. spielmanii, and B. mayonii are the causative agents in Lyme disease. Lyme disease spirochetes reside in infected Ixodes ticks and are transferred to mammalian hosts during tick feeding. Once transmitted, spirochetes must overcome the first line of defense of the innate immune system either by binding complement regulators or by terminating the formation of the membrane attack complex (MAC). In B. bavariensis, the proteins BGA66 and BGA71 inhibit complement activation by interacting with the late complement components C7, C8, and C9, as well as with the formed MAC. In this study, we have determined the crystal structure of the potent MAC inhibitor BGA71 at 2.9 Ǻ resolution. The structure revealed a cysteine cross-linked homodimer. Based on the crystal structure of BGA71 and the structure-based sequence alignment with CspA from B. burgdorferi, we have proposed a potential binding site for C7 and C9, both of which are constituents of the formed MAC. Our results shed light on the molecular mechanism of immune evasion developed by the human pathogenic Borrelia species to overcome innate immunity. These results will aid in the understanding of Lyme disease pathogenesis and pave the way for the development of new strategies to prevent Lyme disease.publishersversionPeer reviewe

    Spatiotemporal characterization of endothelial cell motility and physical forces during exposure to Borrelia burgdorferi

    Get PDF
    Cell motility and biomechanics are critical in various (patho)physiological processes, including the regulation of vascular barrier integrity, which can be subverted by bacterial pathogens. Here, we present a protocol on how to expose endothelial cells (ECs) to vector-borne Borrelia burgdorferi (Bb) and characterize EC kinematics and dynamics during exposure to live or heat-inactivated Bb through traction force and monolayer stress microscopy. Modifications to this protocol may be necessary for studying how different cell types interact with Bb or other microorganisms
    corecore