35 research outputs found
Quantum phase transitions in a resonant-level model with dissipation: Renormalization-group studies
We study a spinless level that hybridizes with a fermionic band and is also
coupled via its charge to a dissipative bosonic bath. We consider the general
case of a power-law hybridization function \Gamma(\w)\propto |\w|^r with
, and a bosonic bath spectral function B(\w)\propto \w^s with . For and , this Bose-Fermi quantum impurity
model features a continuous zero-temperature transition between a delocalized
phase, with tunneling between the impurity level and the band, and a localized
phase, in which dissipation suppresses tunneling in the low-energy limit. The
phase diagram and the critical behavior of the model are elucidated using
perturbative and numerical renormalization-group techniques, between which
there is excellent agreement in the appropriate regimes. For this model's
critical properties coincide with those of the spin-boson and Ising Bose-Fermi
Kondo models, as expected from bosonization.Comment: 14 pages, 14 eps figure
Resolving Power of Visible to Near-Infrared Hybrid -Ta/NbTiN Kinetic Inductance Detectors
Kinetic Inductance Detectors (KIDs) are superconducting energy-resolving
detectors, sensitive to single photons from the near-infrared to ultraviolet.
We study a hybrid KID design consisting of a beta phase tantalum (-Ta)
inductor and a NbTiN interdigitated capacitor (IDC). The devices show an
average intrinsic quality factor of 4.3 1.3
. To increase the power captured by the light sensitive inductor,
we 3D-print an array of 150150 m resin micro lenses on the
backside of the sapphire substrate. The shape deviation between design and
printed lenses is smaller than 1m, and the alignment accuracy of this
process is m and
m. We measure a resolving power for 1545-402 nm that is limited to 4.9 by
saturation in the KID's phase response. We can model the saturation in the
phase response with the evolution of the number of quasiparticles generated by
a photon event. An alternative coordinate system that has a linear response
raises the resolving power to 5.9 at 402 nm. We verify the measured resolving
power with a two-line measurement using a laser source and a monochromator. We
discuss several improvements that can be made to the devices on a route towards
KID arrays with high resolving powers.Comment: 11 pages, 9 Figues, Journal Pape
Ballistic InSb Nanowires and Networks via Metal-Sown Selective Area Growth
Selective area growth is a promising technique to realize semiconductor-superconductor hybrid nanowire networks, potentially hosting topologically protected Majorana-based qubits. In some cases, however, such as the molecular beam epitaxy of InSb on InP or GaAs substrates, nucleation and selective growth conditions do not necessarily overlap. To overcome this challenge, we propose a metal-sown selective area growth (MS SAG) technique, which allows decoupling selective deposition and nucleation growth conditions by temporarily isolating these stages. It consists of three steps: (i) selective deposition of In droplets only inside the mask openings at relatively high temperatures favoring selectivity, (ii) nucleation of InSb under Sb flux from In droplets, which act as a reservoir of group III adatoms, done at relatively low temperatures, favoring nucleation of InSb, and (iii) homoepitaxy of InSb on top of the formed nucleation layer under a simultaneous supply of In and Sb fluxes at conditions favoring selectivity and high crystal quality. We demonstrate that complex InSb nanowire networks of high crystal and electrical quality can be achieved this way. We extract mobility values of 10※000-25※000 cm V s consistently from field-effect and Hall mobility measurements across single nanowire segments as well as wires with junctions. Moreover, we demonstrate ballistic transport in a 440 nm long channel in a single nanowire under a magnetic field below 1 T. We also extract a phase-coherent length of ∼8 μm at 50 mK in mesoscopic rings
Franck-Condon blockade in suspended carbon nanotube quantum dots
Understanding the influence of vibrational motion of the atoms on electronic
transitions in molecules constitutes a cornerstone of quantum physics, as
epitomized by the Franck-Condon principle of spectroscopy. Recent advances in
building molecular-electronics devices and nanoelectromechanical systems open a
new arena for studying the interaction between mechanical and electronic
degrees of freedom in transport at the single-molecule level. The tunneling of
electrons through molecules or suspended quantum dots has been shown to excite
vibrational modes, or vibrons. Beyond this effect, theory predicts that strong
electron-vibron coupling dramatically suppresses the current flow at low
biases, a collective behaviour known as Franck-Condon blockade. Here we show
measurements on quantum dots formed in suspended single-wall carbon nanotubes
revealing a remarkably large electron-vibron coupling and, due to the high
quality and unprecedented tunability of our samples, admit a quantitative
analysis of vibron-mediated electronic transport in the regime of strong
electron-vibron coupling. This allows us to unambiguously demonstrate the
Franck-Condon blockade in a suspended nanostructure. The large observed
electron-vibron coupling could ultimately be a key ingredient for the detection
of quantized mechanical motion. It also emphasizes the unique potential for
nanoelectromechanical device applications based on suspended graphene sheets
and carbon nanotubes.Comment: 7 pages, 3 figure
The epigenetic evolution of glioma is determined by the IDH1 mutation status and treatment regimen
Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histological progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neo-angiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution towards an IDHwt-like phenotype
The Epigenetic Evolution of Glioma Is Determined by the IDH1 Mutation Status and Treatment Regimen
Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histologic progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neoangiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution toward an IDHwt-like phenotype.</p
The Epigenetic Evolution of Glioma Is Determined by the IDH1 Mutation Status and Treatment Regimen
Tumor adaptation or selection is thought to underlie therapy resistance in glioma. To investigate longitudinal epigenetic evolution of gliomas in response to therapeutic pressure, we performed an epigenomic analysis of 132 matched initial and recurrent tumors from patients with IDH-wildtype (IDHwt) and IDH-mutant (IDHmut) glioma. IDHwt gliomas showed a stable epigenome over time with relatively low levels of global methylation. The epigenome of IDHmut gliomas showed initial high levels of genome-wide DNA methylation that was progressively reduced to levels similar to those of IDHwt tumors. Integration of epigenomics, gene expression, and functional genomics identified HOXD13 as a master regulator of IDHmut astrocytoma evolution. Furthermore, relapse of IDHmut tumors was accompanied by histologic progression that was associated with survival, as validated in an independent cohort. Finally, the initial cell composition of the tumor microenvironment varied between IDHwt and IDHmut tumors and changed differentially following treatment, suggesting increased neoangiogenesis and T-cell infiltration upon treatment of IDHmut gliomas. This study provides one of the largest cohorts of paired longitudinal glioma samples with epigenomic, transcriptomic, and genomic profiling and suggests that treatment of IDHmut glioma is associated with epigenomic evolution toward an IDHwt-like phenotype
Impact of <sup>18F</sup>FDG-PET/CT and Laparoscopy in Staging of Locally Advanced Gastric Cancer:A Cost Analysis in the Prospective Multicenter PLASTIC-Study
Background: Unnecessary D2-gastrectomy and associated costs can be prevented after detecting non-curable gastric cancer, but impact of staging on treatment costs is unclear. This study determined the cost impact of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18FFDG-PET/CT) and staging laparoscopy (SL) in gastric cancer staging. Materials and Methods:In this cost analysis, four staging strategies were modeled in a decision tree: (1) 18FFDG-PET/CT first, then SL, (2) SL only, (3) 18FFDG-PET/CT only, and (4) neither SL nor 18FFDG-PET/CT. Costs were assessed on the basis of the prospective PLASTIC-study, which evaluated adding 18FFDG-PET/CT and SL to staging advanced gastric cancer (cT3–4 and/or cN+) in 18 Dutch hospitals. The Dutch Healthcare Authority provided 18FFDG-PET/CT unit costs. SL unit costs were calculated bottom-up. Gastrectomy-associated costs were collected with hospital claim data until 30 days postoperatively. Uncertainty was assessed in a probabilistic sensitivity analysis (1000 iterations). Results: 18FFDG-PET/CT costs were €1104 including biopsy/cytology. Bottom-up calculations totaled €1537 per SL. D2-gastrectomy costs were €19,308. Total costs per patient were €18,137 for strategy 1, €17,079 for strategy 2, and €19,805 for strategy 3. If all patients undergo gastrectomy, total costs were €18,959 per patient (strategy 4). Performing SL only reduced costs by €1880 per patient. Adding 18FFDG-PET/CT to SL increased costs by €1058 per patient; IQR €870–1253 in the sensitivity analysis. Conclusions:For advanced gastric cancer, performing SL resulted in substantial cost savings by reducing unnecessary gastrectomies. In contrast, routine 18FFDG-PET/CT increased costs without substantially reducing unnecessary gastrectomies, and is not recommended due to limited impact with major costs. Trial registration: NCT03208621. This trial was registered prospectively on 30-06-2017.</p
Impact of <sup>18F</sup>FDG-PET/CT and Laparoscopy in Staging of Locally Advanced Gastric Cancer:A Cost Analysis in the Prospective Multicenter PLASTIC-Study
Background: Unnecessary D2-gastrectomy and associated costs can be prevented after detecting non-curable gastric cancer, but impact of staging on treatment costs is unclear. This study determined the cost impact of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18FFDG-PET/CT) and staging laparoscopy (SL) in gastric cancer staging. Materials and Methods:In this cost analysis, four staging strategies were modeled in a decision tree: (1) 18FFDG-PET/CT first, then SL, (2) SL only, (3) 18FFDG-PET/CT only, and (4) neither SL nor 18FFDG-PET/CT. Costs were assessed on the basis of the prospective PLASTIC-study, which evaluated adding 18FFDG-PET/CT and SL to staging advanced gastric cancer (cT3–4 and/or cN+) in 18 Dutch hospitals. The Dutch Healthcare Authority provided 18FFDG-PET/CT unit costs. SL unit costs were calculated bottom-up. Gastrectomy-associated costs were collected with hospital claim data until 30 days postoperatively. Uncertainty was assessed in a probabilistic sensitivity analysis (1000 iterations). Results: 18FFDG-PET/CT costs were €1104 including biopsy/cytology. Bottom-up calculations totaled €1537 per SL. D2-gastrectomy costs were €19,308. Total costs per patient were €18,137 for strategy 1, €17,079 for strategy 2, and €19,805 for strategy 3. If all patients undergo gastrectomy, total costs were €18,959 per patient (strategy 4). Performing SL only reduced costs by €1880 per patient. Adding 18FFDG-PET/CT to SL increased costs by €1058 per patient; IQR €870–1253 in the sensitivity analysis. Conclusions:For advanced gastric cancer, performing SL resulted in substantial cost savings by reducing unnecessary gastrectomies. In contrast, routine 18FFDG-PET/CT increased costs without substantially reducing unnecessary gastrectomies, and is not recommended due to limited impact with major costs. Trial registration: NCT03208621. This trial was registered prospectively on 30-06-2017.</p
<sup>18</sup>F-Fludeoxyglucose-Positron Emission Tomography/Computed Tomography and Laparoscopy for Staging of Locally Advanced Gastric Cancer:A Multicenter Prospective Dutch Cohort Study (PLASTIC)
Importance: The optimal staging for gastric cancer remains a matter of debate. Objective: To evaluate the value of 18F-fludeoxyglucose-positron emission tomography with computed tomography (FDG-PET/CT) and staging laparoscopy (SL) in addition to initial staging by means of gastroscopy and CT in patients with locally advanced gastric cancer. Design, Setting, and Participants: This multicenter prospective, observational cohort study included 394 patients with locally advanced, clinically curable gastric adenocarcinoma (≥cT3 and/or N+, M0 category based on CT) between August 1, 2017, and February 1, 2020. Exposures: All patients underwent an FDG-PET/CT and/or SL in addition to initial staging. Main Outcomes and Measures: The primary outcome was the number of patients in whom the intent of treatment changed based on the results of these 2 investigations. Secondary outcomes included diagnostic performance, number of incidental findings on FDG-PET/CT, morbidity and mortality after SL, and diagnostic delay. Results: Of the 394 patients included, 256 (65%) were men and mean (SD) age was 67.6 (10.7) years. A total of 382 patients underwent FDG-PET/CT and 357 underwent SL. Treatment intent changed from curative to palliative in 65 patients (16%) based on the additional FDG-PET/CT and SL findings. FDG-PET/CT detected distant metastases in 12 patients (3%), and SL detected peritoneal or locally nonresectable disease in 73 patients (19%), with an overlap of 7 patients (2%). FDG-PET/CT had a sensitivity of 33% (95% CI, 17%-53%) and specificity of 97% (95% CI, 94%-99%) in detecting distant metastases. Secondary findings on FDG/PET were found in 83 of 382 patients (22%), which led to additional examinations in 65 of 394 patients (16%). Staging laparoscopy resulted in a complication requiring reintervention in 3 patients (0.8%) without postoperative mortality. The mean (SD) diagnostic delay was 19 (14) days. Conclusions and Relevance: This study's findings suggest an apparently limited additional value of FDG-PET/CT; however, SL added considerably to the staging process of locally advanced gastric cancer by detection of peritoneal and nonresectable disease. Therefore, it may be useful to include SL in guidelines for staging advanced gastric cancer, but not FDG-PET/CT