116 research outputs found

    VERA monitoring of the radio jet 3C 84 during 2007--2013: detection of non-linear motion

    Get PDF
    We present a kinematic study of the subparsec-scale radio jet of the radio galaxy 3C 84/NGC 1275 with the VLBI Exploration of Radio Astrometry (VERA) array at 22 GHz for 80 epochs from 2007 October to 2013 December. The averaged radial velocity of the bright component "C3" with reference to the radio core is found to be 0.27pm0.02c0.27 pm 0.02c between 2007 October and 2013 December. This constant velocity of C3 is naturally explained by the advancing motion of the head of the mini-radio lobe. We also find a non-linear component in the motion of C3 with respect to the radio core. We briefly discuss possible origins of this non-linear motion.Comment: 11 pages, 7 figures, 8 tables (table 1 - 5 are supplementaries), accepted for publication on PAS

    Astrometry of H2_2O masers in the massive star--forming region IRAS 06061+2151 with VERA

    Full text link
    We measured the trigonometric annual parallax of H2_2O maser source associated with the massive star-forming regions IRAS 06061+2151 with VERA. The annual parallax of 0.496±0.0310.496\pm0.031 mas corresponding to a distance of 2.02−0.12+0.132.02^{+0.13}_{-0.12} kpc was obtained by 10 epochs of observations from 2007 October to 2009 September. This distance was obtained with a higher accuracy than the photometric distance previously measured, and places IRAS 06061+2151 in the Perseus spiral arm. We found that IRAS 06061+2151 also has a peculiar motion of larger than 15 km s−1^{-1} counter to the Galactic rotation. That is similar to five sources in the Perseus spiral arm, whose parallaxes and proper motions have already been measured with higher accuracy. Moreover, these sources move at on average 27 km s−1^{-1} toward the Galactic center and counter to the Galactic rotation.Comment: 8 pages, 4 figures, accepted to PAS

    Parabolic Jets from the Spinning Black Hole in M87

    Get PDF
    The M87 jet is extensively examined by utilizing general relativistic magnetohydrodynamic (GRMHD) simulations as well as the steady axisymmetric force-free electrodynamic (FFE) solution. Quasi-steady funnel jets are obtained in GRMHD simulations up to the scale of ∼100\sim 100 gravitational radius (rgr_{\rm g}) for various black hole (BH) spins. As is known, the funnel edge is approximately determined by the following equipartitions; i) the magnetic and rest-mass energy densities and ii) the gas and magnetic pressures. Our numerical results give an additional factor that they follow the outermost parabolic streamline of the FFE solution, which is anchored to the event horizon on the equatorial plane. We also identify the matter dominated, non-relativistic corona/wind play a dynamical role in shaping the funnel jet into the parabolic geometry. We confirm a quantitative overlap between the outermost parabolic streamline of the FFE jet and the edge of jet sheath in VLBI observations at ∼101\sim 10^{1}-105 rg10^{5} \, r_{\rm g}, suggesting that the M87 jet is likely powered by the spinning BH. Our GRMHD simulations also indicate a lateral stratification of the bulk acceleration (i.e., the spine-sheath structure) as well as an emergence of knotty superluminal features. The spin characterizes the location of the jet stagnation surface inside the funnel. We suggest that the limb-brightened feature could be associated with the nature of the BH-driven jet, if the Doppler beaming is a dominant factor. Our findings can be examined with (sub-)mm VLBI observations, giving a clue for the origin of the M87 jet.Comment: 29 pages, 23 figures, accepted for publication in Ap

    Parabolic Jets from the Spinning Black Hole in M87

    Get PDF
    The M87 jet is extensively examined by utilizing general relativistic magnetohydrodynamic (GRMHD) simulations, as well as the steady axisymmetric force-free electrodynamic (FFE) solution. Quasi-steady funnel jets are obtained in GRMHD simulations up to the scale of ~100 gravitational radii (r(sub g)) for various black hole (BH) spins. As is known, the funnel edge is approximately determined by the following equipartitions: (i) the magnetic and rest-mass energy densities and (ii) the gas and magnetic pressures. Our numerical results give an additional factor that they follow the outermost parabolic streamline of the FFE solution, which is anchored to the event horizon on the equatorial plane. We also show that the matter-dominated, nonrelativistic corona/wind plays a dynamical role in shaping the funnel jet into the parabolic geometry. We confirm a quantitative overlap between the outermost parabolic streamline of the FFE jet and the edge of the jet sheath in very long baseline interferometry (VLBI) observations at ~(10(exp 1)10(exp 5))r(sub g), suggesting that the M87 jet is likely powered by the spinning BH. Our GRMHD simulations also indicate a lateral stratification of the bulk acceleration (i.e., the spine-sheath structure), as well as an emergence of knotty superluminal features. The spin characterizes the location of the jet stagnation surface inside the funnel. We suggest that the limb-brightened feature could be associated with the nature of the BH-driven jet, if the Doppler beaming is a dominant factor. Our findings can be examined with (sub)millimeter VLBI observations, giving a clue for the origin of the M87 jet

    Detection of a bright burst from the repeating FRB 20201124A at 2 GHz

    Full text link
    We present a detection of a bright burst from FRB 20201124A, which is one of the most active repeating FRBs, based on S-band observations with the 64-m radio telescope at the Usuda Deep Space Center/JAXA. This is the first FRB observed by using a Japanese facility. Our detection at 2 GHz in February 2022 is the highest frequency for this FRB and the fluence of >> 189 Jy ms is one of the brightest bursts from this FRB source. We place an upper limit on the spectral index α\alpha = -2.14 from the detection of the S band and non-detection of the X band at the same time. We compare an event rate of the detected burst with ones of the previous research, and suggest that the power-law of the luminosity function might be broken at lower fluence, and the fluences of bright FRBs distribute up to over 2 GHz with the power-law against frequency. In addition, we show the energy density of the burst detected in this work was comparable to the bright population of one-off FRBs. We propose that repeating FRBs can be as bright as one-off FRBs, and only their brightest bursts could be detected so some of repeating FRBs intrinsically might have been classified as one-off FRBs.Comment: 8 pages, 5 figures, accepted for publication in Publications of the Astronomical Society of Japan (PASJ
    • …
    corecore