55 research outputs found

    2D disc modelling of the JWST line spectrum of EX Lupi

    Full text link
    We introduce a number of new theoretical approaches and improvements to the thermo-chemical disc modelling code ProDiMo to better predict and analyse the JWST line spectra of protoplanetary discs. We develop a new line escape probability method for disc geometries, a new scheme for dust settling, and discuss how to apply UV molecular shielding factors to photorates in 2D disc geometry. We show that these assumptions are crucial for the determination of the gas heating/cooling rates and discuss how they affect the predicted molecular concentrations and line emissions. We apply our revised 2D models to the protoplanetary disc around the T Tauri star EX Lupi in quiescent state. We calculate infrared line emission spectra between 5 and 20 mic by CO, H2O, OH, CO2, HCN, C2H2 and H2, including lines of atoms and ions, using our full 2D predictions of molecular abundances, dust opacities, gas and dust temperatures. We develop a disc model with a slowly increasing surface density structure around the inner rim that can simultaneously fit the spectral energy distribution, the overall shape of the JWST spectrum of EX Lupi, and the main observed molecular characteristics in terms of column densities, emitting areas and molecular emission temperatures, which all result from one consistent disc model. The spatial structure of the line emitting regions of the different molecules is discussed. High abundances of HCN and C2H2 are caused in the model by stellar X-ray irradiation of the gas around the inner rim.Comment: accepted by A&A, 25 pages, 15 figures, 7 table

    Radial Surface Density Profiles of Gas and Dust in the Debris Disk around 49 Ceti

    Get PDF
    We present ~0.4 resolution images of CO(3-2) and associated continuum emission from the gas-bearing debris disk around the nearby A star 49 Ceti, observed with the Atacama Large Millimeter/Submillimeter Array (ALMA). We analyze the ALMA visibilities in tandem with the broad-band spectral energy distribution to measure the radial surface density profiles of dust and gas emission from the system. The dust surface density decreases with radius between ~100 and 310 au, with a marginally significant enhancement of surface density at a radius of ~110 au. The SED requires an inner disk of small grains in addition to the outer disk of larger grains resolved by ALMA. The gas disk exhibits a surface density profile that increases with radius, contrary to most previous spatially resolved observations of circumstellar gas disks. While ~80% of the CO flux is well described by an axisymmetric power-law disk in Keplerian rotation about the central star, residuals at ~20% of the peak flux exhibit a departure from axisymmetry suggestive of spiral arms or a warp in the gas disk. The radial extent of the gas disk (~220 au) is smaller than that of the dust disk (~300 au), consistent with recent observations of other gas-bearing debris disks. While there are so far only three broad debris disks with well characterized radial dust profiles at millimeter wavelengths, 49 Ceti's disk shows a markedly different structure from two radially resolved gas-poor debris disks, implying that the physical processes generating and sculpting the gas and dust are fundamentally different.Comment: 20 pages, 8 figures, accepted for publication in ApJ March 31, 2017 (submitted Nov 2016

    A Resolved Debris Disk Around the Candidate Planet-hosting Star HD 95086

    Get PDF
    Recently, a new planet candidate was discovered on direct images around the young (10-17 Myr) A-type star HD 95086. The strong infrared excess of the system indicates that, similar to HR8799, Beta Pic, and Fomalhaut, the star harbors a circumstellar disk. Aiming to study the structure and gas content of the HD 95086 disk, and to investigate its possible interaction with the newly discovered planet, here we present new optical, infrared, and millimeter observations. We detected no CO emission, excluding the possibility of an evolved gaseous primordial disk. Simple blackbody modeling of the spectral energy distribution suggests the presence of two spatially separate dust belts at radial distances of 6 and 64 AU. Our resolved images obtained with the Herschel Space Observatory reveal a characteristic disk size of approx. 6.0 5.4 (540 490 AU) and disk inclination of approx 25 deg. Assuming the same inclination for the planet candidate's orbit, its reprojected radial distance from the star is 62 AU, very close to the blackbody radius of the outer cold dust ring. The structure of the planetary system at HD 95086 resembles the one around HR8799. Both systems harbor a warm inner dust belt and a broad colder outer disk and giant planet(s) between the two dusty regions. Modeling implies that the candidate planet can dynamically excite the motion of planetesimals even out to 270 AU via their secular perturbation if its orbital eccentricity is larger than about 0.4. Our analysis adds a new example to the three known systems where directly imaged planet(s) and debris disks coexist
    corecore