86 research outputs found

    Convex computation of the region of attraction of polynomial control systems

    Get PDF
    We address the long-standing problem of computing the region of attraction (ROA) of a target set (e.g., a neighborhood of an equilibrium point) of a controlled nonlinear system with polynomial dynamics and semialgebraic state and input constraints. We show that the ROA can be computed by solving an infinite-dimensional convex linear programming (LP) problem over the space of measures. In turn, this problem can be solved approximately via a classical converging hierarchy of convex finite-dimensional linear matrix inequalities (LMIs). Our approach is genuinely primal in the sense that convexity of the problem of computing the ROA is an outcome of optimizing directly over system trajectories. The dual infinite-dimensional LP on nonnegative continuous functions (approximated by polynomial sum-of-squares) allows us to generate a hierarchy of semialgebraic outer approximations of the ROA at the price of solving a sequence of LMI problems with asymptotically vanishing conservatism. This sharply contrasts with the existing literature which follows an exclusively dual Lyapunov approach yielding either nonconvex bilinear matrix inequalities or conservative LMI conditions. The approach is simple and readily applicable as the outer approximations are the outcome of a single semidefinite program with no additional data required besides the problem description

    Stability and Performance Verification of Optimization-based Controllers

    Get PDF
    This paper presents a method to verify closed-loop properties of optimization-based controllers for deterministic and stochastic constrained polynomial discrete-time dynamical systems. The closed-loop properties amenable to the proposed technique include global and local stability, performance with respect to a given cost function (both in a deterministic and stochastic setting) and the L2\mathcal{L}_2 gain. The method applies to a wide range of practical control problems: For instance, a dynamical controller (e.g., a PID) plus input saturation, model predictive control with state estimation, inexact model and soft constraints, or a general optimization-based controller where the underlying problem is solved with a fixed number of iterations of a first-order method are all amenable to the proposed approach. The approach is based on the observation that the control input generated by an optimization-based controller satisfies the associated Karush-Kuhn-Tucker (KKT) conditions which, provided all data is polynomial, are a system of polynomial equalities and inequalities. The closed-loop properties can then be analyzed using sum-of-squares (SOS) programming

    Learning Koopman eigenfunctions for prediction and control: the transient case

    Get PDF
    This work presents a data-driven framework for learning eigenfunctions of the Koopman operator geared toward prediction and control. The method relies on the richness of the spectrum of the Koopman operator in the transient, off-attractor, regime to construct a large number of eigenfunctions such that the state (or any other observable quantity of interest) is in the span of these eigenfunctions and hence predictable in a linear fashion. Once a predictor for the uncontrolled part of the system is obtained in this way, the incorporation of control is done through a multi-step prediction error minimization, carried out by a simple linear least-squares regression. The predictor so obtained is in the form of a linear controlled dynamical system and can be readily applied within the Koopman model predictive control framework of [11] to control nonlinear dynamical systems using linear model predictive control tools. The method is entirely data-driven and based purely on convex optimization, with no reliance on neural networks or other non-convex machine learning tools. The novel eigenfunction construction method is also analyzed theoretically, proving rigorously that the family of eigenfunctions obtained is rich enough to span the space of all continuous functions. In addition, the method is extended to construct generalized eigenfunctions that also give rise Koopman invariant subspaces and hence can be used for linear prediction. Detailed numerical examples demonstrate the approach, both for prediction and feedback control

    The gap between a variational problem and its occupation measure relaxation

    Full text link
    Recent works have proposed linear programming relaxations of variational optimization problems subject to nonlinear PDE constraints based on the occupation measure formalism. The main appeal of these methods is the fact that they rely on convex optimization, typically semidefinite programming. In this work we close an open question related to this approach. We prove that the classical and relaxed minima coincide when the dimension of the codomain of the unknown function equals one, both for calculus of variations and for optimal control problems, thereby complementing analogous results that existed for the case when the dimension of the domain equals one. In order to do so, we prove a generalization of the Hardt-Pitts decomposition of normal currents applicable in our setting. We also show by means of a counterexample that, if both the dimensions of the domain and of the codomain are greater than one, there may be a positive gap. The example we construct to show the latter serves also to show that sometimes relaxed occupation measures may represent a more conceptually-satisfactory "solution" than their classical counterparts, so that -- even though they may not be equivalent -- algorithms rendering accessible the minimum in the larger space of relaxed occupation measures remain extremely valuable. Finally, we show that in the presence of integral constraints, a positive gap may occur at any dimension of the domain and of the codomain.Comment: 46 pages, 10 figure

    Moment-sum-of-squares hierarchies for set approximation and optimal control

    Get PDF
    This thesis uses the idea of lifting (or embedding) a nonlinear controlled dynamical system into an infinite-dimensional space of measures where this system is equivalently described by a linear equation. This equation and problems involving it are subsequently approximated using well-known moment-sum-of-squares hierarchies. First, we address the problems of region of attraction, reachable set and maximum controlled invariant set computation, where we provide a characterization of these sets as an infinite-dimensional linear program in the cone of nonnegative measures and we describe a hierarchy of finite-dimensional semidefinite-programming (SDP) hierarchies providing a converging sequence of outer approximations to these sets. Next, we treat the problem of optimal feedback controller design under state and input constraints. We provide a hierarchy of SDPs yielding an asymptotically optimal sequence of rational feedback controllers. In addition, we describe hierarchies of SDPs yielding approximations to the value function attained by any given rational controller, from below and from above, as well as a hierarchy of SDPs providing approximations from below to the optimal value function, hence obtaining performance certificates for the designed controllers as well as for any given rational controller. Finally, we describe a method to verify properties of a closed loop interconnection of a nonlinear dynamical system and an optimization-based controller (e.g., a model predictive controller) for deterministic and stochastic nonlinear dynamical systems. Properties such as global stability, the ℓ2\ell_2 gain or performance with respect to a given infinite-horizon cost function can be certified. The methods presented are easy to implement using freely available software packages and are documented by a number of numerical examples
    • 

    corecore