3,827 research outputs found

    Psychosocial factors and physical inactivity in type 2 diabetes

    Get PDF

    Significance of interface anisotropy in laser induced magnetization precession in ferromagnetic metal films

    Full text link
    Laser induced ultrafast demagnetization in ferromagnetic metals was discovered almost 20 years ago, but currently there is still lack of consensus on the microscopic mechanism responsible for the corresponding transfer of angular momentum and energy between electron, lattice and spin subsystems. A distinct, but intrinsically correlated phenomenon occurring on a longer timescale is the magnetization precession after the ultrafast demagnetization process, if a magnetic field is applied to tilt the magnetization vector away from its easy direction, which can be attributed to the change of anisotropy after laser heating. In an in-plane magnetized Pt/Co/Pt thin film with perpendicular interface anisotropy, we found excellent agreement between theoretical prediction with plausible parameters and experimental data measured using time resolved magneto-optical Kerr effect. This agreement confirms that the time evolution of the anisotropy field, which is driven by the interaction between electrons and phonons, determines the magnetization precession completely. A detailed analysis shows that, even though the whole sample is magnetized in-plane, the dynamic interface anisotropy field dictates the initial phase of the magnetization precession, highlighting the significance of the interface anisotropy field in laser induced magnetization precession.Comment: 11 pages, 2 figure

    Gravitational Lensing & Stellar Dynamics

    Full text link
    Strong gravitational lensing and stellar dynamics provide two complementary and orthogonal constraints on the density profiles of galaxies. Based on spherically symmetric, scale-free, mass models, it is shown that the combination of both techniques is powerful in breaking the mass-sheet and mass-anisotropy degeneracies. Second, observational results are presented from the Lenses Structure & Dynamics (LSD) Survey and the Sloan Lens ACS (SLACS) Survey collaborations to illustrate this new methodology in constraining the dark and stellar density profiles, and mass structure, of early-type galaxies to redshifts of unity.Comment: 6 pages, 2 figures; Invited contribution in the Proceedings of XXIst IAP Colloquium, "Mass Profiles & Shapes of Cosmological Structures" (Paris, 4-9 July 2005), eds G. A. Mamon, F. Combes, C. Deffayet, B. Fort (Paris: EDP Sciences

    Spin accumulation and dynamics in inversion-symmetric van der Waals crystals

    Get PDF
    Inversion symmetric materials are forbidden to show an overall spin texture in their band structure in the presence of time-reversal symmetry. However, in van der Waals materials which lack inversion symmetry within a single layer, it has been proposed that a layer-dependent spin texture can arise leading to a coupled spin-layer degree of freedom. Here we use time-resolved Kerr rotation in inversion symmetric WSe2_{2} and MoSe2_{2} bulk crystals to study this spin-layer polarization and unveil its dynamics. Our measurements show that the spin-layer relaxation time in WSe2_2 is limited by phonon-scattering at high temperatures and that the inter-layer hopping can be tunned by a small in-plane magnetic field at low temperatures, enhancing the relaxation rates. We find a significantly lower lifetime for MoSe2_{2} which agrees with theoretical expectations of a spin-layer polarization stabilized by the larger spin-orbit coupling in WSe2_2

    Gravitational Microlensing Near Caustics I: Folds

    Full text link
    We study the local behavior of gravitational lensing near fold catastrophes. Using a generic form for the lensing map near a fold, we determine the observable properties of the lensed images, focusing on the case when the individual images are unresolved, i.e., microlensing. Allowing for images not associated with the fold, we derive analytic expressions for the photometric and astrometric behavior near a generic fold caustic. We show how this form reduces to the more familiar linear caustic, which lenses a nearby source into two images which have equal magnification, opposite parity, and are equidistant from the critical curve. In this case, the simplicity and high degree of symmetry allows for the derivation of semi-analytic expressions for the photometric and astrometric deviations in the presence of finite sources with arbitrary surface brightness profiles. We use our results to derive some basic properties of astrometric microlensing near folds, in particular we predict for finite sources with uniform and limb darkening profiles, the detailed shape of the astrometric curve as the source crosses a fold. We find that the astrometric effects of limb darkening will be difficult to detect with the currently planned accuracy of the Space Interferometry Mission. We verify our results by numerically calculating the expected astrometric shift for the photometrically well-covered Galactic binary lensing event OGLE-1999-BUL-23, finding excellent agreement with our analytic expressions. Our results can be applied to any lensing system with fold caustics, including Galactic binary lenses and quasar microlensing.Comment: 37 pages, 7 figures. Revised version includes an expanded discussion of applications. Accepted to ApJ, to appear in the August 1, 2002 issue (v574

    Femtosecond Demagnetization and Hot Hole Relaxation in Ferromagnetic GaMnAs

    Full text link
    We have studied ultrafast photoinduced demagnetization in GaMnAs via two-color time-resolved magneto-optical Kerr spectroscopy. Below-bandgap midinfrared pump pulses strongly excite the valence band, while near-infrared probe pulses reveal sub-picosecond demagnetization that is followed by an ultrafast (\sim1 ps) partial recovery of the Kerr signal. Through comparison with InMnAs, we attribute the signal recovery to an ultrafast energy relaxation of holes. We propose that the dynamical polarization of holes through pp-dd scattering is the source of the observed probe signal. These results support the physical picture of femtosecond demagnetization proposed earlier for InMnAs, identifying the critical roles of both energy and spin relaxation of hot holes.Comment: 7 pages, 6 figure

    Online, interactive user guidance for high-dimensional, constrained motion planning

    Get PDF
    We consider the problem of planning a collision-free path for a high-dimensional robot. Specifically, we suggest a planning framework where a motion-planning algorithm can obtain guidance from a user. In contrast to existing approaches that try to speed up planning by incorporating experiences or demonstrations ahead of planning, we suggest to seek user guidance only when the planner identifies that it ceases to make significant progress towards the goal. Guidance is provided in the form of an intermediate configuration q^\hat{q}, which is used to bias the planner to go through q^\hat{q}. We demonstrate our approach for the case where the planning algorithm is Multi-Heuristic A* (MHA*) and the robot is a 34-DOF humanoid. We show that our approach allows to compute highly-constrained paths with little domain knowledge. Without our approach, solving such problems requires carefully-crafting domain-dependent heuristics

    Influence of laser-excited electron distributions on the x-ray magnetic circular dichroism spectra: Implications for femtosecond demagnetization in Ni

    Full text link
    In pump-probe experiments an intensive laser pulse creates non-equilibrium excited electron distributions in the first few hundred femtoseconds after the pulse. The influence of non-equilibrium electron distributions caused by a pump laser on the apparent X-ray magnetic circular dichroism (XMCD) signal of Ni is investigated theoretically here for the first time, considering electron distributions immediately after the pulse as well as thermalized ones, that are not in equilibrium with the lattice or spin systems. The XMCD signal is shown not to be simply proportional to the spin momentum in these situations. The computed spectra are compared to recent pump-probe XMCD experiments on Ni. We find that the majority of experimentally observed features considered to be a proof of ultrafast spin momentum transfer to the lattice can alternatively be attributed to non-equilibrium electron distributions. Furthermore, we find the XMCD sum rules for the atomic spin and orbital magnetic moment to remain valid, even for the laser induced non-equilibrium electron distributions.Comment: 6 pages, 3 figure

    Correlation between magnetism and spin-dependent transport in CoFeB alloys

    Get PDF
    We report a correlation between the spin polarization of the tunneling electrons (TSP) and the magnetic moment of amorphous CoFeB alloys. Such a correlation is surprising since the TSP involves s-like electrons close to the Fermi level (EF), while the magnetic moment mainly arises due to all d-electrons below EF. We show that probing the s and d-bands individually provides clear and crucial evidence for such a correlation to exist through s-d hybridization, and demonstrate the tuneability of the electronic and magnetic properties of CoFeB alloys.Comment: Accepted for publication in Physical Review Letters. Letter (4 pages) and Supplementary material (4 pages
    corecore