2,661 research outputs found
KM3NeT:a large underwater neutrino telescope in the Mediterranean Sea
High energy neutrinos produced in astrophysical processes will allow for a
new way of studying the universe. In order to detect the expected flux of high
energy neutrinos from specific astrophysical sources, neutrino telescopes of a
scale of a km^3 of water will be needed. A Northern Hemisphere detector is
being proposed to be sited in a deep area of the Mediterranean Sea. This
detector will provide complimentary sky coverage to the IceCube detector being
built at the South Pole. The three neutrino telescope projects in the
Mediterranean (ANTARES, NEMO and NESTOR) are partners in an effort to design,
and build such a km^3 size neutrino telescope, the KM3NeT. The EU is funding a
3-year Design Study; the status of the Design Study is presented and some
technical issues are discussed.Comment: 4 pages, 3 figures, Prepared for the 10th International Conference on
Astroparticle and Underground Physics (TAUP 2007), Sendai, Japan, 11-15 Sep
200
Recommended from our members
Toward a physiological explanation of juvenile growth curves
Juvenile growth curves are generally sigmoid in shape: Growth is initially nearly exponential, but it slows to near zero as the animal approaches maturity. The drop‐off in growth rate is puzzling because, everything else being equal, selection favors growing as fast as possible. Existing theory posits sublinear scaling of resource acquisition with juvenile body mass and linear scaling of the requirement for maintenance, so the difference, fuel for growth, decreases as the juvenile increases in size. Experimental evidence, however, suggests that maintenance metabolism increases sublinearly not linearly with size. Here, we develop a new theory consistent with the experimental evidence. Our theory is based on the plausible assumption that there is a trade‐off in the capacity of capillaries to supply growing and developed cells. As the proportion of non‐growing cells increases, they take up more macromolecules from the capillaries, leaving fewer to support growing cells. The predicted growth curves are realistic and similar to those of previous models (Bertalanffy, Gompertz, and Logistic) but have the advantage of being derived from a plausible physiological model. We hope that our focus on resource delivery in capillaries will encourage new experimental work to identify the detailed physiological basis of the trade‐off underlying juvenile growth curves
Sublethal toxicant effects with dynamic energy budget theory: model formulation
We develop and test a general modeling framework to describe the sublethal effects of pollutants by adding toxicity modules to an established dynamic energy budget (DEB) model. The DEB model describes the rates of energy acquisition and expenditure by individual organisms; the toxicity modules describe how toxicants affect these rates by changing the value of one or more DEB parameters, notably the parameters quantifying the rates of feeding and maintenance. We investigate four toxicity modules that assume: (1) effects on feeding only; (2) effects on maintenance only; (3) effects on feeding and maintenance with similar values for the toxicity parameters; and (4) effects on feeding and maintenance with different values for the toxicity parameters. We test the toxicity modules by fitting each to published data on feeding, respiration, growth and reproduction. Among the pollutants tested are metals (mercury and copper) and various organic compounds (chlorophenols, toluene, polycyclic aromatic hydrocarbons, tetradifon and pyridine); organisms include mussels, oysters, earthworms, water fleas and zebrafish. In most cases, the data sets could be adequately described with any of the toxicity modules, and no single module gave superior fits to all data sets. We therefore propose that for many applications, it is reasonable to use the most general and parameter sparse module, i.e. module 3 that assumes similar effects on feeding and maintenance, as a default. For one example (water fleas), we use parameter estimates to calculate the impact of food availability and toxicant levels on the long term population growth rate
Modes of Growth in Dynamic Systems
Regardless of a system's complexity or scale, its growth can be considered to
be a spontaneous thermodynamic response to a local convergence of down-gradient
material flows. Here it is shown how growth can be constrained to a few
distinct modes that depend on the availability of material and energetic
resources. These modes include a law of diminishing returns, logistic behavior
and, if resources are expanding very rapidly, super-exponential growth. For a
case where a system has a resolved sink as well as a source, growth and decay
can be characterized in terms of a slightly modified form of the predator-prey
equations commonly employed in ecology, where the perturbation formulation of
these equations is equivalent to a damped simple harmonic oscillator. Thus, the
framework presented here suggests a common theoretical under-pinning for
emergent behaviors in the physical and life sciences. Specific examples are
described for phenomena as seemingly dissimilar as the development of rain and
the evolution of fish stocks.Comment: 16 pages, 6 figures, including appendi
Heterogeneous integration of KY(WO4)2-on-glass : a bonding study
Rare-earth ion doped potassium yttrium double tungstate, RE: KY(WO4)(2), is a promising candidate for small, power-efficient, on-chip lasers and amplifiers. There are two major bottlenecks that complicate the realization of such devices. Firstly, the anisotropic thermal expansion coefficient of KY(WO4)(2) makes it challenging to integrate the crystal on glass substrates. Secondly, the crystal layer has to be, for example, < 1 mu m to obtain single mode, high refractive index contrast waveguides operating at 1550 nm. In this work, different adhesives and bonding techniques in combination with several types of glass substrates are investigated. An optimal bonding process will enable further processing towards the manufacturing of integrated active optical KY(WO4)(2) devices. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen
- …