19 research outputs found
The effect of Cistus incanus herbal tea supplementation on oxidative stress markers and lipid profile in healthy adults
Background: Oxidative stress and dyslipidemia play a critical role in the development of cardiovascular disease (CVD). Regular intake of polyphenol-rich diets is associated with a reduced risk of CVDs.Methods: The present study was a pilot study with 24 healthy volunteers and was designed to determine if a 12-week administration of Cistus incanus herbal tea, containing phenolic acids and flavonoids, reduces cardiovascular risk factors including oxidative stress and dyslipidemia in healthy adults. Phenolic compounds profile and antibacterial activity of Cistus incanus infusion were also measured.Results: Herbal infusion led to improvement in lipid profile by increase (D4%, p = 0.033) high-density lipoprotein cholesterol concentration and decrease triglyceride (D14%, p = 0.013) concentrations. In addition, the Cistus incanus diet was associated with decreased serum concentrations of malondialdehyde (D16%, p < 0.01) and advanced oxidation protein products (D18%, p < 0.001).Conclusions: Cistus incanus administration decreases cardiovascular risk factors including oxidative stress and dyslipidemia and this action supports the idea of using Cistus incanus tea on a daily basis as an effective dietary component for prevention of atherosclerotic CVD
Silica-polymer composites as the novel antibiotic delivery systems for bone tissue infection
Bone tissue inflammation, osteomyelitis, is commonly caused by bacterial invasion and requires prolonged antibiotic therapy for weeks or months. Thus, the aim of this study was to develop novel silica-polymer local bone antibiotic delivery systems characterized by a sustained release of ciprofloxacin (CIP) which remain active against Staphylococcus aureus for a few weeks, and do not have a toxic effect towards human osteoblasts. Four formulations composed of ethylcellulose (EC), polydimethylsiloxane (PDMS), freeze-dried CIP, and CIP-adsorbed mesoporous silica materials (MCM-41-CIP) were prepared via solvent-evaporation blending method. All obtained composites were characterized in terms of molecular structure, morphological, and structural properties by using Fourier Transform Infrared Spectroscopy (FTIR), scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM/EDX), and X-ray diffraction (XRD), thermal stability by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), and in vitro antibiotic release. The antibacterial activity against Staphylococcus aureus (ATCC 6538) as well as the in vitro cytocompatibility to human osteoblasts of obtained composites were also examined. Physicochemical results confirmed the presence of particular components (FTIR), formation of continuous polymer phase onto the surface of freeze-dried CIP or MCM-41-CIP (SEM/EDX), and semi-crystalline (composites containing freeze-dried CIP) or amorphous (composites containing MCM-41-CIP) structure (XRD). TGA and DSC analysis indicated the high thermal stability of CIP adsorbed onto the MCM-41, and higher after MCM-41-CIP coating with polymer blend. The release study revealed the significant reduction in initial burst of CIP for the composites which contained MCM-41-CIP instead of freeze-dried CIP. These composites were also characterized by the 30-day activity against S. aureus and the highest cytocompatibility to human osteoblasts in vitro
Synthesis and biological evaluation of hybrid quinolone-based quaternary ammonium antibacterial agents
A series of novel fluoroquinolone-Safirinium dye hybrids was synthesized by means of tandem Mannich-electrophilic amination reactions from profluorophoric isoxazolones and antibiotics bearing a secondary amino group at position 7 of the quinoline ring. The obtained fluorescent spiro fused conjugates incorporating quaternary nitrogen atoms were characterized by H-1 NMR, IR, MS, and elemental analysis. All the synthetic analogues (3a-h and 4a-h) were evaluated for their in vitro antimicrobial, bactericidal, and antibiofilm activities against a panel of Gram positive and Gram-negative pathogenic bacteria. The most active Safirinium Q derivatives of lomefloxacin (4d) and ciprofloxacin (4e) exhibited molar-based antibacterial activities comparable to the unmodified drugs and displayed considerable inhibitory potencies in E. coli DNA gyrase supercoiling assays with IC50 values in the low micromolar range. Zwiterionic hybrids were noticeably less lipophilic than the parent quinolones in micellar electrokinetic chromatography (MECK) experiments. The tests performed in the presence of phenylalanine-arginine-beta-naphthylamide (PA beta N) or carbonyl cyanide m-chlorophenylhydrazone (CCCP) revealed that the conjugates are to some extent subject to bacterial efflux and cellular accumulation, respectively. Moreover, the hybrids did not exhibit notable cytotoxicity towards the HEK 293 control cell line and demonstrated low propensity for resistance development, as exemplified for compounds 3g and 4b. Finally, molecular docking experiments revealed that the synthesized compounds were able to bind in the fluoroquinolone-binding mode at S. aureus DNA gyrase and S. pneumoniae topoisomerase IV active sites. (C) 2019 Elsevier Masson SAS. All rights reserved.Peer reviewe
Identification of KLHDC2 as an efficient proximity-induced degrader of K-RAS, STK33, 尾-catenin, and FoxP3
Targeted protein degradation (TPD), induced by enforcing target proximity to an E3 ubiquitin ligase using small molecules has become an important drug discovery approach for targeting previously undruggable disease-causing proteins. However, out of over 600 E3 ligases encoded by the human genome, just over 10 E3 ligases are currently utilized for TPD. Here, using the affinity-directed protein missile (AdPROM) system, in which an anti-GFP nanobody was linked to an E3 ligase, we screened over 30 E3 ligases for their ability to degrade 4 target proteins, K-RAS, STK33, 尾-catenin, and FoxP3, which were endogenously GFP-tagged. Several new E3 ligases, including CUL2 diGly receptor KLHDC2, emerged as effective degraders, suggesting that these E3 ligases can be taken forward for the development of small-molecule degraders, such as proteolysis targeting chimeras (PROTACs). As a proof of concept, we demonstrate that a KLHDC2-recruiting peptide-based PROTAC connected to chloroalkane is capable of degrading HALO-GFP protein in cells
Unsupervised network analysis of the plastic supraoptic nucleus transcriptome predicts caprin2 regulatory interactions
AbstractThe supraoptic nucleus (SON) is a group of neurons in the hypothalamus responsible for the synthesis and secretion of the peptide hormones vasopressin and oxytocin. Following physiological cues, such as dehydration, salt-loading and lactation, the SON undergoes a function related plasticity that we have previously described in the rat at the transcriptome level. Using the unsupervised graphical lasso (Glasso) algorithm, we reconstructed a putative network from 500 plastic SON genes in which genes are the nodes and the edges are the inferred interactions. The most active nodal gene identified within the network wasCaprin2.Caprin2encodes an RNA-binding protein that we have previously shown to be vital for the functioning of osmoregulatory neuroendocrine neurons in the SON of the rat hypothalamus. To test the validity of the Glasso network, we either overexpressed or knocked downCaprin2transcripts in differentiated rat pheochromocytoma PC12 cells and showed that these manipulations had significant opposite effects on the levels of putative target mRNAs. These studies suggest that the predicative power of the Glasso algorithm within anin vivosystem is accurate, and identifies biological targets that may be important to the functional plasticity of the SON.</jats:p
Phenolic Composition and Biological Properties of Wild and Commercial Dog Rose Fruits and Leaves
Rosa canina L. (dog rose) is a rich source of phenolic compounds that offer great hope for the prevention of chronic human diseases. Herein, wild and commercial samples of dog rose were chemically characterized with respect to their phenolic composition by liquid chromatography coupled to diode array detection and electrospray ionization tandem mass spectrometry (LC-DAD-ESI/MS). Furthermore, in vitro antioxidant properties and antibacterial activity of dog rose fruits and leaves hydromethanolic extracts and infusions were also evaluated. The results revealed that wild and commercial fruits of dog rose are similar in terms of l(+)-ascorbic acid, total phenolics (TPC), total flavonoids (TFC) and total phenolic acids (TPAC) content, individual phenolic constituents and antioxidant activity. Moreover, the fruits had lower levels of phenolic compounds and also revealed lower biological activity than the leaves. On the other hands, the highest content of TPC, TFC, TPAC, individual phenolic constituents, DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging activity and FRAP (ferric reducing antioxidant power) were found in the leaf’s infusions. They were also the only ones to show antibacterial activity. Overall, these finding confirmed usefulness of R. canina L. leaves and fruits as a rich source of bioactive phenolic compounds with potential use in food, pharmaceutical, and cosmetic industries