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Abstract
The supraoptic nucleus (SON) is a group of neurons in the hypothalamus responsible for the synthesis and
secretion of the peptide hormones vasopressin and oxytocin. Following physiological cues, such as dehydration,
salt-loading and lactation, the SON undergoes a function related plasticity that we have previously described in
the rat at the transcriptome level. Using the unsupervised graphical lasso (Glasso) algorithm, we reconstructed a
putative network from 500 plastic SON genes in which genes are the nodes and the edges are the inferred
interactions. The most active nodal gene identified within the network was Caprin2. Caprin2 encodes an
RNA-binding protein that we have previously shown to be vital for the functioning of osmoregulatory neuroen-
docrine neurons in the SON of the rat hypothalamus. To test the validity of the Glasso network, we either
overexpressed or knocked down Caprin2 transcripts in differentiated rat pheochromocytoma PC12 cells and
showed that these manipulations had significant opposite effects on the levels of putative target mRNAs. These
studies suggest that the predicative power of the Glasso algorithm within an in vivo system is accurate, and
identifies biological targets that may be important to the functional plasticity of the SON.
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Significance Statement

The scale and complexity of transcriptome datasets makes the identification of suitable targets for physiologic
studies a daunting problem. Using the unsupervised graphical lasso (Glasso) algorithm, we reconstructed a
putative network from 500 plastic genes in the supraoptic nucleus (SON) of the hypothalamus. The most active
nodal gene identified within the network encodes RNA-binding protein CAPRIN2. We tested the validity of the
Glasso network by either overexpressing or knocking down Caprin2 transcripts in differentiated rat pheochro-
mocytoma cells and showed that these manipulations had opposite effects on the levels of putative target
mRNAs. Our studies suggest that the predicative power of the Glasso algorithm can identify biological targets
that may be important in a Caprin2 gene network mediating functional plasticity in the SON.
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Introduction
The supraoptic nucleus (SON) of the mammalian hypo-

thalamus is a central neuroendocrine integrative structure
consisting of large magnocellular neurons (MCNs) whose
axons project to the posterior lobe of the pituitary (PP;
Burbach et al., 2001), a neurovascular interface through
which the brain regulates peripheral organs to maintain
homeostasis (Murphy et al., 2016). The SON is responsi-
ble for the synthesis of the neuropeptide hormones argi-
nine vasopressin (AVP), which cleaved from its precursor
propeptide en route from the SON to the PP (Murphy
et al., 2016). On release, AVP travels through the blood
stream to specific receptor targets located in the kidney
where it promotes water reabsorption in the collecting duct
(Breyer and Ando, 1994).

Lactation and dehydration evoke a dramatic remodel-
ling of the SON (Hatton, 1997; Theodosis et al., 1998). A
plethora of changes in morphology, electrical properties
and biosynthetic and secretory activity have all been de-
scribed (Sharman et al., 2004). For example, as a conse-
quence of the depletion of pituitary stores that accompanies
chronic osmotic stimulation, there is a need to synthesize
more AVP. This starts with an increase in transcription
(Murphy and Carter, 1990), which results in an increase in
the abundance of both precursor hnRNAs (Kondo et al.,
2004) and mature AVP mRNAs (Sherman et al., 1986). In
addition, It has been demonstrated that the AVP mRNAs
is subject to post-transcriptional modification in the form
of an increase in the length of the 3’ poly(A) tail following
dehydration (Carrazana et al., 1988; Zingg et al., 1988;
Carter and Murphy, 1989; Murphy and Carter, 1990).
Recently, microarrays have been used to document
transcriptome-wide changes in gene expression in the
SON of male rats subject to salt-loading and dehydration
(Hindmarch et al., 2006; Greenwood et al., 2015), and in
female rats in response to both dehydration and 11 d of
lactation (Qiu et al., 2011), and it has been suggested that
these changes are part of an organized response to main-

taining homeostasis in a changing environment (Hind-
march et al., 2013).

The analysis pipeline for these, and indeed most microar-
ray experiments, is one of normalization and statistical test-
ing before the filtering according to some arbitrary cutoff,
such as fold-change. The resulting list of transcripts can
then either be mined manually to select well-regulated
targets, or subjected to one of the many approaches to
bioinformatic analysis according to gene function or path-
way. While these strategies are well used and often return
important findings, they are at odds with the unbiased
philosophy behind the transcriptome-wide experiment, as
they require that the target gene has already been de-
scribed, typically in a tissue discrete from that under
interrogation. To investigate new strategies for target pri-
oritization, we have here employed network reconstruc-
tion/inference strategies to our SON microarray data in
either the control state or the “plastic” state to test
whether this is an effective strategy for the robust identi-
fication of important plastic genes in this tissue.

Network inference is a strategy whereby a network
structure is estimated from transcriptome data; genes are
the nodes of this network and the edges are the inferred
interactions. Two main strategies exist when attempting
to reconstruct gene networks. The most tractable approach
uses supervised inference where a set of “known” links and
non-links between genes are used as a training set to
construct a classifier or decision function. This classifier
can be subsequently used to estimate links or non-links
between further nodes in a network. In the second ap-
proach, unsupervised inference is used and the network
structure is assumed only from the transcriptome data
presented and thus the inference problem is harder. Here,
we use the unsupervised graphical lasso (Glasso) algo-
rithm (Friedman et al., 2008) to generate a putative gene
network (see Materials and Methods for a full description).
Gene features in Glasso are viewed as nodes in a network
that predicts stable and reproducible dependencies be-
tween these nodes. To validate the results from the
Glasso algorithm, we inferred a second network model
based on the matrix of Pearson correlation coefficients
between nodes.

From the derived Glasso network, we identified a hub
nodal gene, Caprin2, that encodes an RNA-binding pro-
tein that we have previously identified as being important
in the central osmotic defense response (Konopacka
et al., 2015). To test this prediction from the Glasso
algorithm, we perturbed the network in vitro by manipu-
lating Caprin2 expression. We show that the predicative
power of the Glasso algorithm is accurate and identifies
genes that may be important in biological transitions.

Materials and Methods
Microarray data preparation

We re-mined raw data taken from analysis of 29 Af-
fymetrix 230 2.0 microarrays that represented animals in
either the naïve state (n � 4 female and n � 5 male) or the
plastic state (n � 5 dehydration-male, n � 5 lactation-
female, n � 5 dehydrated-female, n � 5 salt-loaded-male;
Hindmarch et al., 2006; Qiu et al., 2011; Greenwood et al.,
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2015). NCBI Accession numbers (incorporating controls):
male dehydration, GSE3110; male salt loading, GSE65663;
female dehydration and lactation, GSE30733. We note that
the biological importance of salt and water balance, es-
pecially after challenge, ensures small standard devia-
tions (10%) in the data (Hindmarch et al., 2013). Validation
using quantitative reverse transcription PCR (qRT-PCR;
Hindmarch et al., 2006; Qiu et al., 2011; Greenwood et al.,
2015; Fig. 3) has shown that the microarray data are very
robust and reliable. We note that the genes encoding the
two major neuropeptide products of the SON, AVP and
oxytocin, are not represented in our differentially ex-
pressed gene list. The expression level of both these
important peptides was so high within the control data
that the signal was saturated, precluding any detection of
upregulation following dehydration, lactation or salt load-
ing (Hindmarch et al., 2006).

Initially trying to run Glasso on the entire SON microar-
ray dataset of 31042 genes was prohibitive as a covari-
ance matrix of 31042 � 31042 genes was too large to be
stored in memory in R. Also, it is worth noting that many
genes, even if well correlated with each other, were of
lower interest as they are not necessarily strongly up or
down regulated from control to experimental state. There-
fore, it was necessary to reduce the size of the datasets to
a manageable subset that only included potentially inter-
esting genes, those that were significantly regulated be-
tween naïve and plastic states. To avoid the false
discovery rate inherent in comparisons with sets of large
numbers, we used a two-sample t test, comparing our
experimental data against sets of 29 randomly generated
matrices (using a Gaussian random deviate) of the same
dimensionality (31042 � 31042; Fig. 1A). We performed a
set of 10 such comparisons, against different sets of
randomly generated matrices, and the most significant t
test p values from this study were of order 10�5, the most

significant p value from a comparison was 1.5 � 10�5 and
the least significant was 6 � 10�5. When we applied this
cutoff to the microarray data, the t test returned �500
gene pairs with higher significance (Fig. 1B) with p values
up to 1 � 10�15. All data were run on raw, normalized and
logged data for comparison. To establish the false dis-
covery rate, and the level of significance that should be
applied to relieve the effects of false discovery, we ran a
t test on a randomly generated set of 29 (31042 � 31042)
matrices (the same size as the experimental data matri-
ces). We then applied these thresholds to our raw, nor-
malized and logged data for comparison between these
types.

Network inference using the Glasso algorithm
The Glasso algorithm is based on determining an esti-

mated precision matrix. This precision matrix is the in-
verse of the estimated sample covariance matrix, derived
from data. For two features, a zero component of the
precision matrix would mean the corresponding variance
is infinite, i.e., that the correlation is uniform and infinitely
spread, and the features are therefore totally uncorre-
lated. In our case these features can be viewed as nodes,
representing genes or expression sites generally, in a
network and the method is determining dependencies of
expression levels. With the Glasso algorithm a penalty
term is used to force components of the estimated pre-
cision matrix toward zero. Those components of the pre-
cision matrix which remain non-zero correspond to the
highest interdependencies between nodes (e.g., genes) in
the network.

The Glasso algorithm has various advantages over other
algorithms for network inference. It is one of the fastest
network inference algorithms available, running 30-4000
times faster than its competitors (Friedman et al., 2008). It
can manage large amounts of data, running on 1000 �

Figure 1. A, Microarray data t test, control versus experiment, genes ranked by ttest2 p value low to high. Raw data, normalized data,
and logged data all gave comparable results. Randomly generated data gave higher p values for over half the gene pairs. Above the
point of curve intersection microarray data stopped providing information, as significance was equivalent to randomly generated data.
B, Zoomed in version of A, showing that the microarray data generated far lower p values compared to the random data. The lowest
p value from randomly generated data were 1.5 � 10�5. The figure shows that the top 500 genes are under 1 � 10�5.
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1000 matrices in around a minute and the use of an L1
(Lasso) penalty term to enforce sparsity enables few key
functional links to be inferred from large amounts of data.
This fitted our problem well as we wish to obtain a few
high-probability links to test experimentally from a large
amount of data.

Glasso estimates a sparse undirected graph by apply-
ing an L1 penalty to the estimation of an inverse covari-
ance matrix. The model assumes that data (in this case,
gene expression data) is continuous and that the obser-
vations comes from a multivariate Gaussian distribution,
that has mean � and covariance matrix �. This covariance
matrix encodes the extent that gene expression values are
correlated and therefore its components give a measure of
strength of correlation. As such the matrix is symmetrical
along its diagonal. An estimation of the inverse of the cova-
riance matrix, called the estimated precision matrix, is used
to infer potential links.

To determine those features which are most interde-
pendent Glasso uses a penalty term in the algorithm to
force components of the estimated precision matrix to
zero. A parameter �, prefacing this penalty term, controls
the extent of sparsity in the estimated network. Those
remaining components of the precision matrix which re-
main non-zero correspond to the highest interdependen-
cies among nodes (genes) in the network. Let S be the
sample covariance matrix and S�1 be its inverse. Let � be
the estimated precision matrix. The objective function of
the Glasso algorithm has two terms, which are optimized
via an algorithm. The first term is of the form KL[N(0, �),
N(0, S�1)], where KL is the Kullback-Leibler divergence, a
measure of similarity of distributions, and N(0, M) is a
Gaussian distribution with a zero mean vector and preci-
sion matrix M. Minimization of this term would therefore
enhance the similarity of the estimated precision matrix �
to the inverse sample covariance matrix. The second term
in the objective function is �|| � ||1 where || � ||1 is the sum
of the absolute values in �. Minimization of this term will
force the values of the components within � to zero.
Effectively then, the algorithm tries to move � as closely
as possible toward S�1 subject to the influence of the
second term, which is trying to force component values
within the matrix � toward zero, the relative influence of
these two terms controlled by �. Those remaining com-
ponents of the precision matrix which remain non-zero
correspond to the highest interdependencies among
nodes in the network.

The sample covariance matrix becomes singular when
the dimension of the matrix is much larger than the sam-
ple size. For this reason, to model large covariance ma-
trices, the usual approximation is via a sparse estimation
matrix, with most entries zero (Bickel and Levina, 2008).
This is the route taken by the Glasso algorithm, in which
optimization of a norm-1 penalized maximum likelihood
leads to a sparse estimation of the precision matrix (Fried-
man et al., 2008). To further understand this issue we
used the F07AGF routine of the Numerical Algorithms
Group (NAG) Library (Mark 24) to determine the condition
number � of the matrices used in our study. Approxi-
mately, if we determine that the condition number � to be

of order 1.0E�k then k digits of numerical accuracy would
be lost due to accumulated arithmetical loss of precision
(Cheney and Kincaid, 2007). For our dataset with 500
features (representing genes), the NAG routine gives a
condition number of 0.69E�15 for the sample covariance
matrix. Hence, the data-derived covariance matrix itself is
close to being rank-deficient (though no covariance ma-
trix inversion or other data manipulations are required by
the method). For the least sparse approximation we used
in our numerical experiments, the estimated condition
number of the sparse precision matrix was 7.17E�5,
suggesting numerical accuracy was satisfactory for the
given machine precision. However, this issue of the con-
dition number required us to use the subset of 500 genes,
rather than the full set of genes.

Using a sample covariance matrix derived from the
data, Glasso iteratively derives an estimated inverse co-
variance matrix (precision matrix). The algorithm uses an
L1-norm penalty to drive elements in this precision matrix
toward 0. This penalty therefore determines the sparsity
of the estimated precision matrix and hence the sparsity
of the network of assumed dependencies. This penalty
term is prefaced by a parameter � and the higher the value
of �, the greater the sparsity. To find an appropriate value
for � we chose the known links and non-links of a well-
studied pathway, to give an indication of the correct
network sparsity, and best choice for �. The ERK pathway
data evaluated (Sachs et al., 2002) consists of 11 proteins
and 11943 observations of their expression levels from 12
perturbation experiments. The ERK pathway is very well
studied and a full network of directional links is known for
the network. We downloaded the Glasso software (from
http://statweb.stanford.edu/�tibs/glasso/) and applied it
to this dataset. Setting the Glasso sparsity parameter to
� � 4 gave those links and non-links which have been
found in the ERK pathway (Sachs et al., 2002).

In addition to running Glasso on the top 500 differen-
tially expressed genes, a Pearson correlation measure
was also derived from the data. The genes pairings re-
turned by Glasso were in the top most highly correlated
pairings as determined by the Pearson correlation coeffi-
cient.

Animal experiment
All experiments were performed under a Home Office

United Kingdom license held under, and in strict accor-
dance with, the provisions of the United Kingdom Animals
(Scientific Procedures) Act (1986); they were also ap-
proved by the local Animal Welfare and Ethical Review
Board. Twelve-week-old male SD Rats (Harlan) were
given access to standard laboratory rat chow and water
ad libitum for one week to acclimatize to laboratory con-
ditions, following which half the animals were completely
deprived of drinking water for 72 h (dehydration), which
elicits a reliable and consistent increase in plasma osmo-
lality with limited weight loss (Greenwood et al., 2015).
Animals were killed by stunning and then decapitated with
a small animal guillotine (Harvard Apparatus). The brain
was quickly extracted and placed on aluminum foil and
frozen with dry ice. Brains were stored at -80°C.
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Functional validation of the Glasso-derived gene
network

The rat adrenal pheochromocytoma cell line (PC12) was
grown complete DMEM (Sigma D6546) containing 10%
(v/v) horse serum (HS; Gibco 16050), 5% (v/v) heat-
inactivated fetal bovine serum (Gibco 10500), 1% (v/v)
penicillin/streptomycin solution (Pen Strep; Gibco 15140),
and 2 mM L-glutamine (Gibco 25030). Cells were cultured
onto tissue culture flasks precoated with 40 �g/ml rat-tail
Type I collagen (Type VII, C8897, Sigma Aldrich) and
maintained at 37°C in a humidified incubator with 5% (v/v)
CO2. On reaching confluence, cells were passaged and
plated onto collagen-coated 12-well tissue culture plates
with complete DMEM as described above. Differentiation
of PC12 cells was initiated by replacing the medium with
serum-free DMEM containing 0.25% (w/v) bovine serum
albumin (Sigma A17906), 1% (v/v) HS, 1% (w/v) Pen Strep
solution, and 50 ng/ml nerve growth factor (Life
Technologies13257-019). Medium and NGF were re-
placed every 2 d. At day 4 of NGF treatment, Caprin2
shRNA lentivirus was added to the medium, with a scram-
bled shRNA lentivirus being used as a control. Lentiviral
vectors containing shRNA of Caprin2 and scrambled
shRNA control were produced as previously described
(Konopacka et al., 2015). For overexpression studies of
Caprin2 in PC12 cells, an adenovirus expressing full-
length Caprin2 cDNA (Konopacka et al., 2015) was used,
with an eGFP-expressing virus as a control. Production of
adenoviral vectors has been described (Greenwood et al.,
2015).

qRT-PCR
Tissue from SON was sampled using a cryostat, taking

60-�m coronal slices, and the SON was punched using a
0.5-mm tissue punch (Interfocus). Twelve punches were
taken from the left and right SON (24 total per brain) and
stored on dry ice in 1.5-ml tubes. Total RNA was ex-
tracted from punched samples by combining TRIzol re-
agent with Qiagens RNeasy kit protocols (Qiagen). The
punched samples were removed from dry ice and rapidly
resuspended, by vortexing, in 1-ml TRIzol reagent. Fol-
lowing TRIzol phase separation with chloroform, 350 �l of
the upper aqueous phase was removed, mixed with
350-�l 70% (v/v) ethanol and applied to RNeasy columns.
The remaining steps were performed as recommended by
the manufacturer. For cell studies, cells were collected
and lysed with 350-�l TRIzol reagent on day 7 after NGF
treatment (3 d after virus transduction). RNA extraction
was performed using Direct-Zol RNA Mini Prep Kit (Zymo
Research) following the manufacturer’s instructions. RNA
was converted to cDNA using QuantiTect Reverse Tran-
scription kit (Qiagen). Primers for qPCR were designed
using the NCBI PrimerBLAST tool (http://www.ncbi.nlm.
nih.gov/tools/primer-blast/; Table 1). Note that the primer
set for Hbb used for the analysis of Sprague Dawley (SD)
SON RNA (derived from sequence BI287300) did not
detect PC12 transcripts, presumably due to that cell line
being derived from a different strain of rat. We therefore
used primers designed to detect all rat Hbb alleles. PCRs
were performed on ABI7500 or StepOnePlus Real-time
PCR Systems (Applied Biosytem) using FastStart Univer-

Table 1. List of primers used for qRT-PCR

Gene GenBank Primers
Caprin2 AI412606 Forward CAGGGTTAAGTGCAAGCGAT

Reverse CTGGTGGTTGACTGGTTGAG
Atf4 NM_024403 QuantiTect primer assay; Rn_Atf4_1_SG: QT00366233
Hbb BI287300

NM_033234
Forward GCCCAAAGGCCTTCATCATT
Reverse CCCCCTTTCCTGCTTGTCTA
QuantiTect primer assay; Rn_Hbb_1_SG: QT00394107

Opn3 BI289640 Forward CGACTGACAGGGACTCATCA
Reverse ATGGGACAGGCCAAAGAAGA

Ran NM_053439 Forward CGCGTGTGCCACCTTATTTA
Reverse CCAAACAGCTAAATATGCAAGTCC

Pcp4 NM_013002 Forward TCAGGAGATAATGATGGGCAGA
Reverse CCCCACTAGGACTGTGATCC

Igfbp2 NM_013122 Forward AACCTGTACCTCCGTTCCTG
Reverse CCCAAGCCTGTACCCAGTAT

Pdyn BF412731 Forward CCAGCCCCATCTCCTTAACT
Reverse AGACTGTTCCCCCTCGGTAT

Ap1s2 AI045228 Forward ACCAATGCCACTTTGCTTCA
Reverse CTGCCTAGTCGTCGGAAGTC

Atp1a2 NM_012505 Forward GGATCCTCCTGGTGACCTTT
Reverse CTGTTTCTTCTTGCCACCCC

Hmgn2 BM391736 Forward AGGATGTCTCTCCTGGAAGC
Reverse TTGTTAGCACACGGAACACTT

Gja1 AI411352 Forward GCACTGTTGAAACCTCCCTC
Reverse TGACGAGCAACTTGGATGTTT

Hba1 AI179404 Forward AATCTTCCCCCAGCAGTTCTT
Reverse CACTATAGGGAATTTGGCCCTC

EST AI577319 Forward ATCTCCAAGGTGGTGGGAAG
Reverse AAACTGGGTGTGGATCCTGT

Rpl19 NM_031103.1 Forward GCGTCTGCAGCCATGAGTA
Reverse TGGCATTGGCGATTTCGTTG

New Research 5 of 13

November/December 2017 2017, 4(6) e0243-17.2017 eNeuro.org

http://www.ncbi.nlm.nih.gov/tools/primer-blast
http://www.ncbi.nlm.nih.gov/tools/primer-blast


sal SYBR Green Master Mix (Roche). The housekeeping
gene Rpl19 was used to normalize expression from tar-
gets and to calculate 2���CT (Livak and Schmittgen, 2001)
to analyze the relative change in gene expression.

Statistical tests
Statistical differences between two experimental groups

were evaluated using independent-sample unpaired Stu-
dent’s t tests; p 	 0.05 was considered significant.

Results

Significance testing of microarray data
Transcriptome datasets were derived from Affymetrix

oligonucleotide array analysis of that the SD rat SON
subject to three physiologic transitions that elicit func-
tional plasticity, namely dehydration in both males (Hind-
march et al., 2006) and females (Qiu et al., 2011), salt-
loading in males (Greenwood et al., 2015), and lactation in
females (Qiu et al., 2011). To avoid the false discovery
inherent in large comparisons, we employed a two-
sample t test with a 31042 � 29 matrix of randomly
generated data (see Methods) and established an appro-
priate significance threshold of n � 10�5. We selected the
top 500 genes that were regulated in the SON between
naïve and plastic states that satisfied the significance
threshold (all p values 	 1 � 10�15) and used these to
establish the 500 � 500 covariance matrix computed and
solved by Glasso.

Network reconstruction using Glasso and Pearson
Running Glasso with a L1 penalty parameter of 30 and

ignoring links below a threshold of 0.0001 yielded 28
unique genes (Table 2) engaged in 48 links (Table 3).
Pearson correlation returned 47 unique genes (Table 4)
engaged in 32 bidirectional links with a correlation mea-
sure over 0.95 between (Table 5). We filtered these results
to find those genes which had a high fan-out in terms of
connectivity to other genes. We established subsets of
genes with either a fan-out of more than one link, or at
least one link to another gene with a fan-out greater than
one. This resulted in networks of 14 genes from the
Glasso reconstruction (Fig. 2A) and seven genes from the
Pearson correlation (Fig. 2B). Only one gene satisfied
these requirements in both networks; Caprin2 was ranked
50th overall in the t test.

qRT-PCR validation
We validated the expression profiles of the 14 genes

identified by Glasso using qRT-PCR of RNA extracted
from euhydrated and dehydrated 12-week-old male SD
SON (n � 10 for euhydrated and n � 11 for dehydrated).
Of the original 14 genes in the Glasso network (Fig. 2A), 10
had significantly different (p 	 0.05) relative expression
levels (Fig. 3), while three of the predicted genes were
false positives and were therefore excluded (Hmgn2,
BM391736; Gja1, AI411352; Hba1, AI179404). Primer sets
for one of the expressed sequence tags (ESTs) AI577319
failed to deliver data. To establish whether correlations
exist between the genes validated by qRT-PCR a Pearson

correlation was performed which resulted in 8 out of 10
correlations (Fig. 4).

Functional validation of the Glasso network in vitro
We developed an in vitro model to assess the functional

validity of the Glasso predicted network. Rat adrenal
pheochromocytoma PC12 cells can be made to differen-
tiate into cells with a neurone-like phenotype by treatment
with nerve growth factor (NGF). First, we used qRT-PCR
to show that transcripts encoded by a sub-set of the
genes of the Glasso network are expressed in PC12 cells,
and that their expression level is changed following NGF
treatment (Fig. 5). This analysis revealed that all the genes
in the network, except Prodynorphin (Pdyn) and ATPase
Na�/K� transporting subunit-�2 (Atp1a2), are expressed
in undifferentiated PC12 cells. Expression of Pdyn mRNAs
are dramatically increased in NGF-treated cells
(�100,000-fold increase), while the level of Atp1a2 re-
mains undetectable. The expression of Caprin2, Opsin-3
(Opn3), and Purkinje cell protein 4 (Pcp4) transcripts is
decreased in PC12 cells following NGF treatment (Caprin2
0.425, p � 0.006; Opn3 0.343, p � 0.017; Pcp4 0.052, p �
0.003), while Ras oncogene family member Ran, insulin-like
growth factor-binding protein 2 (Igfbp2), activating transcrip-
tion factor 4 (Atf4), hemoglobin subunit-� (Hbb) and
adaptor-related protein complex 1 	2-subunit (Ap1s2)
mRNA abundance are not significantly changed.

We then manipulated the expression of nodal gene
Caprin2 in differentiated PC12 cells using lentiviral vectors
that express either an shRNA specific for all splice iso-

Table 2. List of unique genes in the Glasso network

1367576_at S41066 Gpx1
1367590_at NM_053439 Ran
1367624_at NM_024403 Atf4
1367648_at NM_013122 Igfbp2
1367681_at NM_022523 CD151
1367887_at NM_017024 Lcat
1368145_at NM_013002 Pcp4
1368170_at NM_024371 Slc6a1
1368565_at NM_019225 Slc1a3
1370172_at AA892254 Sod2
1370240_x_at AI179404 Hba1
1370442_at U25684 Tmsbl1
1371245_a_at BI287300 Hbb
1371352_at BM391736 Hmgn2
1372002_at AI411352 Gja1
1373260_at AI412606 Caprin2
1375856_at AI102258 EST
1386911_at NM_012505 Atp1a2
1388608_x_at AI577319 EST
1388795_at AI101500 EST
1389586_at BE107169 EST
1398888_at AI408819 H3f3b
1383294_at BF412731 Pdyn
1393263_at AW522530 Snhg11
1393373_at BI289640 Opn3
1394940_at BI294811 Fam46a
1395249_at BF400750 Snhg11
1398616_at AI045228 Ap1s2

Column 1, Affymetrix probe ID; column 2, GenBank accession number; col-
umn 3, current gene ID.
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forms of Caprin2 (Konopacka et al., 2015) to knockdown
endogenous expression (Fig. 6A), or an Adenoviral vector
expressing full-length rat Caprin2 cDNA (Konopacka et al.,
2015) to elicit overexpression (Fig. 6B). We then used
qRT-PCR to ask about the effects of Caprin2 knockdown
(Fig. 6C) or overexpression (Fig. 6D) on the levels of
transcripts encoded by putative target genes within the
Glasso network. With the exception of the Atf4 and Igfbp2
mRNAs, the expression of which was not altered by ma-
nipulation of Caprin2, knockdown or overexpression of
Caprin2 in vitro had opposite effects on Pdyn, Opn3 and
Hbb mRNA abundance. Thus, while Caprin2 knockdown
increased Pdyn mRNA levels (3.833, p � 0.00004),
Caprin2 overexpression decreased Pdyn transcript abun-
dance (0.572, p � 0.035). In contrast, both Opn3 and Hbb
levels were decreased by Caprin2 knockdown (Opn3
0.477, p � 0.00004; Hbb 0.323, p � 0.0013), but were
increased following Caprin2 overexpression (Opn3 1.506,
p � 0.0023; Hbb 2.771, p � 0.0008).

Discussion
Following stimulatory physiologic cues, such as dehy-

dration, salt-loading and lactation, the SON of the hypo-
thalamus undergoes a function related plasticity that has
previously been described in the rat at the transcriptome

Table 3. Glasso pairs

1383294_at BF412731 1367624_at NM_024403
1373260_at AI412606 1367624_at NM_024403
1386911_at NM_012505 1367624_at NM_024403
1370240_x_at AI179404 1367624_at NM_024403
1373260_at AI412606 1371352_at BM391736
1370240_x_at AI179404 1371352_at BM391736
1367624_at NM_024403 1383294_at BF412731
1373260_at AI412606 1383294_at BF412731
1372002_at AI411352 1383294_at BF412731
1398616_at AI045228 1383294_at BF412731
1367648_at NM_013122 1383294_at BF412731
1371245_a_at BI287300 1383294_at BF412731
1386911_at NM_012505 1383294_at BF412731
1370240_x_at AI179404 1383294_at BF412731
1388608_x_at AI577319 1383294_at BF412731
1373260_at AI412606 1367590_at NM_053439
1386911_at NM_012505 1367590_at NM_053439
1373260_at AI412606 1368145_at NM_013002
1386911_at NM_012505 1368145_at NM_013002
1370240_x_at AI179404 1368145_at NM_013002
1367624_at NM_024403 1373260_at AI412606
1371352_at BM391736 1373260_at AI412606
1383294_at BF412731 1373260_at AI412606
1367590_at NM_053439 1373260_at AI412606
1368145_at NM_013002 1373260_at AI412606
1367887_at NM_017024 1373260_at AI412606
1393373_at BI289640 1373260_at AI412606
1389586_at BE107169 1373260_at AI412606
1394940_at BI294811 1373260_at AI412606
1398888_at AI408819 1373260_at AI412606
1370442_at U25684 1373260_at AI412606
1367576_at S41066 1373260_at AI412606
1372002_at AI411352 1373260_at AI412606
1398616_at AI045228 1373260_at AI412606
1367648_at NM_013122 1373260_at AI412606
1395249_at BF400750 1373260_at AI412606
1371245_a_at BI287300 1373260_at AI412606
1370172_at AA892254 1373260_at AI412606
1370240_x_at AI179404 1373260_at AI412606
1388608_x_at AI577319 1373260_at AI412606
1388795_at AI101500 1373260_at AI412606
1373260_at AI412606 1367887_at NM_017024
1373260_at AI412606 1393373_at BI289640
1370240_x_at AI179404 1393373_at BI289640
1373260_at AI412606 1389586_at BE107169
1373260_at AI412606 1394940_at BI294811
1373260_at AI412606 1398888_at AI408819
1373260_at AI412606 1370442_at U25684
1386911_at NM_012505 1368565_at NM_019225
1373260_at AI412606 1367576_at S41066
1370240_x_at AI179404 1367681_at NM_022523
1383294_at BF412731 1372002_at AI411352
1373260_at AI412606 1372002_at AI411352
1386911_at NM_012505 1372002_at AI411352
1386911_at NM_012505 1368170_at NM_024371
1383294_at BF412731 1398616_at AI045228
1373260_at AI412606 1398616_at AI045228
1370240_x_at AI179404 1398616_at AI045228
1388608_x_at AI577319 1398616_at AI045228
1383294_at BF412731 1367648_at NM_013122
1373260_at AI412606 1367648_at NM_013122
1386911_at NM_012505 1367648_at NM_013122
1370240_x_at AI179404 1393263_at AW522530
1373260_at AI412606 1395249_at BF400750

1383294_at BF412731 1371245_a_at BI287300
1373260_at AI412606 1371245_a_at BI287300
1370240_x_at AI179404 1371245_a_at BI287300
1388608_x_at AI577319 1371245_a_at BI287300
1386911_at NM_012505 1375856_at AI102258
1373260_at AI412606 1370172_at AA892254
1367624_at NM_024403 1386911_at NM_012505
1383294_at BF412731 1386911_at NM_012505
1367590_at NM_053439 1386911_at NM_012505
1368145_at NM_013002 1386911_at NM_012505
1368565_at NM_019225 1386911_at NM_012505
1372002_at AI411352 1386911_at NM_012505
1368170_at NM_024371 1386911_at NM_012505
1367648_at NM_013122 1386911_at NM_012505
1375856_at AI102258 1386911_at NM_012505
1367624_at NM_024403 1370240_x_at AI179404
1371352_at BM391736 1370240_x_at AI179404
1383294_at BF412731 1370240_x_at AI179404
1368145_at NM_013002 1370240_x_at AI179404
1373260_at AI412606 1370240_x_at AI179404
1393373_at BI289640 1370240_x_at AI179404
1367681_at NM_022523 1370240_x_at AI179404
1398616_at AI045228 1370240_x_at AI179404
1393263_at AW522530 1370240_x_at AI179404
1371245_a_at BI287300 1370240_x_at AI179404
1388608_x_at AI577319 1370240_x_at AI179404
1383294_at BF412731 1388608_x_at AI577319
1373260_at AI412606 1388608_x_at AI577319
1398616_at AI045228 1388608_x_at AI577319
1371245_a_at BI287300 1388608_x_at AI577319
1370240_x_at AI179404 1388608_x_at AI577319
1373260_at AI412606 1388795_at AI101500

List of the pairs which retained a covariance value �0.0001, i.e., potential
links. Columns 1 (Affymetrix probe ID) and 2 (GenBank accession number)
are the first gene, columns 3 (Affymetrix probe ID) and 4 (GenBank acces-
sion number) are the second gene. Note that the list contains duplicates, so
although it is 96 long, there are 48 links.
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level (Hindmarch et al., 2006; Qiu et al., 2011; Greenwood
et al., 2015). Using the unsupervised Glasso algorithm
(Friedman et al., 2008), we sought to reconstruct a puta-
tive network from 500 plastic SON genes in which genes
are the nodes and the edges are the inferred interactions.
The most active nodal gene identified within the network
was RNA-binding protein Caprin2. To test the validity of
the Glasso approach, we sought an in vitro cell culture
model in which genes of the predicted network are ex-
pressed. We found that differentiated PC12 cells met
these criteria. We then either overexpressed or knocked
down Caprin2 transcripts in differentiated rat pheochro-
mocytoma PC12 cells, and showed that these manipula-

Table 4. List of unique genes in the Pearson network

1367624_at NM_024403 Atf4
1367648_at NM_013122 Igfbp2
1367654_at NM_031819 Fat1
1367660_at NM_024162 Fabp2
1368170_at NM_024371 Slc6a1
1368559_at NM_017091 Pcsk1
1370030_at NM_017305 Gclm
1370240_x_at AI179404 Hba1
1370442_at U25684 Tmsbl1
1370575_a_at D50734 Azin1
1371433_at BM384999 EST
1372754_at BG666424 Appl2
1373092_at BE109587 Tgfbr3
1373260_at AI412606 Caprin2
1373380_at AI169085 EST
1373699_at BM391164 EST
1373870_at BE110630 Fam98a
1374004_at BM387902 Prepl
1374709_at AI406795 Hlf
1374812_at AA818197 Ptpn13
1374941_at BF397951 EST
1375856_at AI102258 EST
1375964_at BF282282 Psph
1376836_at BF419655 EST
1387037_at AF022247 Cubn
1388145_at BM390128 Tnxa-psq
1388608_x_at AI577319 Hba1
1388770_at BI275670 Ufm1
1388795_at AI101500 EST
1389020_at BM389149 EST
1389135_at AW140637 Ctps2
1398348_at AA945604 EST
1377725_at AI575322 EST
1378320_at BG373845 Rlbp1
1379566_at AW527929 Rbm11
1379900_at AI043697 Aldh5a1
1382008_at AI044348 Rnls
1382021_at AA850650 Pkd2
1382905_at AI102514 Mrc2
1383413_at AW531481 Hhat1
1391923_at BG376838 EST
1392108_at BF390648 RM2
1393165_at BG377684 Tmem206
1393373_at BI289640 Opn3
1393837_at AI145227 EST
1394029_at BF283049 Vma21
1398616_at AI045228 Ap1s2

Column 1, Affymetrix probe ID; column 2, GenBank accession number; col-
umn 3, current gene ID.

Table 5. Pearson pairs

1367624_at NM_024403 1374941_at BF397951
1374941_at BF397951 1367624_at NM_024403
1391923_at BG376838 1373260_at AI412606
1398616_at AI045228 1373260_at AI412606
1370575_a_at D50734 1373260_at AI412606
1389135_at AW140637 1373260_at AI412606
1382008_at AI044348 1388770_at BI275670
1383413_at AW531481 1377725_at AI575322
1388770_at BI275670 1382008_at AI044348
1370575_a_at D50734 1393165_at BG377684
1393837_at AI145227 1393373_at BI289640
1373260_at AI412606 1391923_at BG376838
1379566_at AW527929 1391923_at BG376838
1373380_at AI169085 1391923_at BG376838
1370575_a_at D50734 1391923_at BG376838
1377725_at AI575322 1383413_at AW531481
1382021_at AA850650 1367654_at NM_031819
1372754_at BG666424 1367654_at NM_031819
1393373_at BI289640 1393837_at AI145227
1367660_at NM_024162 1373870_at BE110630
1367660_at NM_024162 1370442_at U25684
1376836_at BF419655 1375964_at BF282282
1394029_at BF283049 1370030_at NM_017305
1398348_at AA945604 1392108_at BF390648
1374709_at AI406795 1389020_at BM389149
1387037_at AF022247 1374812_at AA818197
1373092_at BE109587 1374812_at AA818197
1370030_at NM_017305 1394029_at BF283049
1374812_at AA818197 1387037_at AF022247
1373870_at BE110630 1367660_at NM_024162
1370442_at U25684 1367660_at NM_024162
1391923_at BG376838 1379566_at AW527929
1375856_at AI102258 1368170_at NM_024371
1368559_at NM_017091 1374004_at BM387902
1391923_at BG376838 1373380_at AI169085
1374709_at AI406795 1382905_at AI102514
1371433_at BM384999 1382905_at AI102514
1374004_at BM387902 1368559_at NM_017091
1373260_at AI412606 1398616_at AI045228
1375964_at BF282282 1376836_at BF419655
1388145_at BM390128 1367648_at NM_013122
1373699_at BM391164 1367648_at NM_013122
1389020_at BM389149 1374709_at AI406795
1382905_at AI102514 1374709_at AI406795
1373092_at BE109587 1374709_at AI406795
1367648_at NM_013122 1388145_at BM390128
1373260_at AI412606 1370575_a_at D50734
1393165_at BG377684 1370575_a_at D50734
1391923_at BG376838 1370575_a_at D50734
1392108_at BF390648 1398348_at AA945604
1367648_at NM_013122 1373699_at BM391164
1382905_at AI102514 1371433_at BM384999
1375856_at AI102258 1379900_at AI043697
1368170_at NM_024371 1375856_at AI102258
1379900_at AI043697 1375856_at AI102258
1373260_at AI412606 1389135_at AW140637
1374812_at AA818197 1373092_at BE109587
1374709_at AI406795 1373092_at BE109587
1367654_at NM_031819 1382021_at AA850650
1367654_at NM_031819 1372754_at BG666424
1388795_at AI101500 1378320_at BG373845
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tions had significant opposite effects on the levels of
putative target mRNAs.

A major bottleneck of the “omic” era is the sheer scale
and complexity of the datasets, and the resulting daunting
problem of identifying suitable targets for often expensive
and time consuming physiologic studies. We sought to
address this problem in a mammalian homeostatic sys-
tem that demonstrates functionally important plasticity
following the physiologic challenges of dehydration, salt-

1388608_x_at AI577319 1370240_x_at AI179404
1370240_x_at AI179404 1388608_x_at AI577319
1378320_at BG373845 1388795_at AI101500

Pearson correlated pairs with a value �0.95. Columns 1 (Affymetrix probe
ID) and 2 (GenBank accession number) are the first gene, columns 3 (Af-
fymetrix probe ID) and 4 (GenBank accession number) are the second gene.
Note that the list contains duplicates, so although it is 64 long, there are 32
links.

Figure 2. Putative gene networks derived from SON transcriptome data. A, The Glasso-derived network. Undirected links are solid
black lines. Genes are represented by short names. B, The Pearson correlation-derived network. Undirected links are solid black
lines.Genes are represented by short names.

Figure 3. qRT-PCR validation of differential expression. The expression profiles of the 14 genes identified by Glasso were examined
by qRT-PCR of RNA extracted from euhydrated (control) and dehydrated (DH) 12-week-old male SD SON. Of the original 14 genes
in the Glasso network (Fig. 2A) 10 had significantly different relative expression levels. Error bar, SEM; �p 	 0.05; ��p 	 0.01; ���p 	 0.001;
n � 10 for control and n � 11 for DH.
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loading and lactation. Each of these physiologic chal-
lenges activates the SON in a similar manner resulting in
a function related plasticity that facilitates an appropriate
neuroendocrine response. We hypothesized that there is
a common network of genes in this tissue that underpins
the general plasticity of the SON. to test this hypothesis,
we combined data from the activated plastic SON, e.g.,
male and female water deprived, male salt-loaded and
female lactation, and compared this to the male and
female “naïve” data. This comparison resulted in a list of
significantly regulated genes on which we performed un-
supervised network inference using Glasso to reconstruct
a gene network from the SON of the rat hypothalamus in
either naïve or physiologically stimulated states, thus al-

lowing us to identify potentially important “hub” genes
with high numbers of putative regulatory links (i.e., they
have a large fan-out in circo graphs) that may have prom-
inent functional roles. Network inference, while less accu-
rate than supervised methods, is a useful first step in the
absence of a training set of known links and non-links.
Rather than performing large numbers of perturbation
experiments to characterize the entire network, we can
use existing microarray data to generate correlations be-
tween genes and by applying network inference predict a
of number high confidence links, giving us target genes
for perturbation experiments, hence maximizing our ef-
forts.

The application of Glasso resulted is a network of 28
genes with 48 links, while Pearson placed 47 genes in a
network of 32 links. Only one gene, Caprin2, appeared in
both networks. To mitigate the false discovery rate fur-
ther, the network was reduced by eliminating genes below
a “richness” criterion. Only those genes that the network
infers as having links to at least 2 genes, and that both
those genes should be linked to at least two others, were
included (Fig. 2). Candidate genes identified from the
Glasso inference were then validated by qRT-PCR of SON
RNA collected from either euhydrated or dehydrated male
rats (Fig. 3). Following elimination of the three genes that
did not validate, as well as one that did not deliver data,
the remaining genes were subject to Pearson correlation
to attempt reengineering of the network (Fig. 4). Exami-
nation of this network clearly reveals a central hub gene,
Caprin2, an RNA-binding protein (Shiina and Tokunaga,
2010) that has been shown to bind the AVP mRNA (Kono-
packa et al., 2015) and to mediate changes in AVP mRNA
abundance and poly(A) tail length (Konopacka et al.,
2015). Lentiviral mediated shRNA knockdown of Caprin2
in the osmotically stimulated hypothalamus shortened the
AVP mRNA poly(A) tail and reduced transcript abundance
(Konopacka et al., 2015). In an in vitro system, Caprin2
overexpression enhanced the abundance and poly(A) tail
length of the AVP mRNA (Konopacka et al., 2015).

To test the physiologic validity of the Glasso network
centered on Caprin2, we developed an in vitro system that
enabled us manipulate Caprin2 expression and ask about
consequential effects on the steady-state levels of puta-
tive transcript targets. As the network is based on tran-
sctriptome data, the functional links must regulate mRNA
abundance. First, we showed that NGF differentiated
PC12 cells express all of the genes in the network, except
for one (Atp1a2; Fig. 5). We then used viral-mediate gene
transfer to either knockdown Caprin2 using a previously
characterized specific shRNA (Konopacka et al., 2015), or
to overexpress Caprin2 (Fig. 6). As a consequence, we
saw opposite effects on the levels of putative target mR-
NAs [knockdown (Fig. 6C), overexpression (Fig. 6D)].
Thus, while Caprin2 knockdown decreased the abun-
dance of Opn3, Ran and Hbb transcripts, overexpression
increased the levels of Opn3 and Hbb RNAs. In contrast,
Caprin2 knockdown increased Pcp4, Pdyn, and Ap1s2
RNAs, while overexpression decreased Pdyn transcript
abundance. Igfbp2 and Atf4 RNA levels were unaffected
by Caprin2 manipulation.

Figure 4. The validated Glasso-derived gene network. Link with
significant Pearson correlation (p 	 0.05) are represented by
solid lines. Links not significantly correlated are represented by
dotted lines.

Figure 5. Expression of Glasso network genes in PC12 cells.
Relative mRNA expression of genes in the network was exam-
ined in both undifferentiated and NGF-treated PC12 cells by
qRT-PCR. The relative mRNA level was calculated using 2^(�

ct)
method where the expression level of undifferentiated sample
was calculated as 1. Since Pdyn is undetectable at 40 cycles on
qRT-PCR in undifferentiated PC12 cells, the relative mRNA level
was calculated by assumption of Ct value of undifferentiated
sample as 40 cycles. Error bar, SEM; �p 	 0.05; ��p 	 0.01;
unpaired Student’s t test; n � 3.
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Figure 6. Change in mRNA expression of Glasso network genes in differentiated PC12 cells following Caprin2 knockdown or Caprin2
overexpression. A, For knockdowm, NGF-treated PC12 cells were transduced with lentiviral vectors expressing either a Caprin2
shRNA (CaprinKD) or a scrambled shRNA (control). Relative mRNA expression of endogenous Caprin2 was examined by qRT-PCR.
The relative mRNA level was calculated using 2^(�

ct) method, where the expression level of control sample was calculated as 1.
Error bar, SEM; ���p 	 0.001; unpaired Student’s t test; n � 6. B, For overexpression, NGF-treated PC12 cells were transduced with
adenoviral vectors expressing either Caprin2 (CaprinO) or eGFP (control). Relative mRNA expression of endogenous Caprin2 was
examined by qRT-PCR. The relative mRNA level was calculated using 2^(�

ct) method where the expression level of control sample
was calculated as 1. Error bar, SEM; ���p 	 0.001; unpaired Student’s t test; n � 4. C, NGF-treated PC12 cells were transduced with
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In the dehydrated SON, an increase in Caprin2 mRNA
expression is accompanied by an increase in the abun-
dance of Opn3, Ran, Pcp4, Igfbp2, Pdyn, Atf4, and Ap1s2
transcripts, but a decrease in Hbb mRNA abundance.
Consistent with this, the decrease in Caprin2 expression
following differentiation of PC12 cells reduces Opn3 and
Pcp4 transcript levels. However, Pdyn levels dramatically
increase as a consequence of NGF-mediated differentia-
tion of PC12, probably as a consequence of a separate
Caprin2-independent transcriptional mechanism. We then
manipulated Caprin2 activity in differentiated PC12 cells
by overexpression or shRNA-mediated knockdown to ask
about effects on the expression on putative network in-
teracting genes. In some cases, we saw dramatic oppo-
site effects. Thus, Caprin2 knockdown reduced Opn3 and
Hbb mRNA levels, but increased Pdyn transcript abun-
dance, whereas Caprin2 overexpression increased Opn3
and Hbb mRNA levels, but reduced Pdyn transcript abun-
dance. These data suggest that Caprin2 functions to in-
crease Opn3 and Hbb expression, but to decrease Pdyn
expression. These data are consistent with the increased
Opn3 mRNA abundance seen in the dehydrated SON,
perhaps through direct association and consequent sta-
bilisation. However, this is contrary to expectation in
terms of Pdyn, which has increased expression in the
dehydrated SON, and Hbb, which has decreased expres-
sion in the dehydrated SON. We suggest that any role for
Caprin2 in Pdyn and Hbb mRNA regulation may not be
direct and need to be considered in the context of other,
possibly transcriptional, mechanisms.

Our data raise questions regarding the molecular nature
and physiologic consequences of the regulatory interac-
tions in the Caprin2 gene network. Caprin2 knockdown in
the in vivo hypothalamus leads to dysfunction of the
normal physiologic response to salt loading, an osmotic
challenge, which in healthy rats leads to a gradual in-
crease of urine output and fluid intake. Caprin2 knock-
down results in a significant decrease in urine output and
fluid intake, and an increase in urine osmolality and
plasma AVP levels (Konopacka et al., 2015). We hypoth-
esize that these dramatic physiologic consequences are a
sum-total of changes in the expression of the gene prod-
ucts encoded by Caprin2 target genes. That Pdyn is a
putative target of Caprin2 is instructive in this regard. The
expression of the endogenous opioid peptide Pdyn within
the hypothalamus is well known, as is its upregulation
following dehydration (Sherman et al., 1986). Dynorphin
peptide colocalizes with AVP, and both can be released
either from axons or somato-dendritically. At the level of
the neural lobe, dynorphin is coreleased with AVP and
acts on axon terminal 
�opiate receptors to inhibit elec-

trically evoked secretion of oxytocin (Falke, 1988). Cen-
trally, dendritic release of dynorphin appears to regulate
MCN electrical activity (Brown and Bourque, 2004; Brown
et al., 2004; Brown et al., 2006). It is thus possible that
Caprin2 mediates some of its physiologic effects through
the actions of dynorphin. Interestingly, the Hbb gene is
expressed in the brain (Ohyagi et al., 1994), and encodes
the hemorphins, a family of endogenous nonclassical opi-
oid peptides (Nyberg et al., 1997; Zhao et al., 1997).

Using transcriptome data from the physiologically plas-
tic SON as a model, we have shown that our unbiased
network inference strategy, using Glasso, has predictive
value, and can “enrich” for functional interactions that can
be tested experimentally. The application of Glasso to
extensive transcriptome datasets will accelerate the iden-
tification of physiologically relevant pathways.
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