1,643 research outputs found

    Electron-Phonon Interaction in NbB_2 : A Comparison with MgB_2

    Full text link
    We present a comparison of electron-phonon interaction in NbB_2 and MgB_2, calculated using full-potential, density-functional-based methods in P6/mmm crystal structure. Our results, described in terms of (i) electronic structure, (ii) phonon density of states F(\omega), (iii) Eliashberg function \alpha ^2F(\omega), and (iv) the solutions of the isotropic Eliashberg gap equation, clearly show significant differences in the electron-phonon interaction in NbB_2 and MgB_2. We find that the average electron-phonon coupling constant \lambda is equal to 0.59 for MgB_2 and 0.43 for NbB_2, leading to superconducting transition temperature T_c of around 22 K for MgB_2 and 3 K for NbB_2

    Nonradiative interaction and entanglement between distant atoms

    Full text link
    We show that nonradiative interactions between atomic dipoles placed in a waveguide can give rise to deterministic entanglement at ranges much larger than their resonant wavelength. The range increases as the dipole-resonance approaches the waveguide's cutoff frequency, caused by the giant density of photon modes near cutoff, a regime where the standard (perturbative) Markov approximation fails. We provide analytical theories for both the Markovian and non-Markovian regimes, supported by numerical simulations, and discuss possible experimental realizations.Comment: 9 pages, 2 figure

    Hole-doped, High-Temperature Superconductors Li_{x}BC, Na_{x}BC and C_{x} : A Coherent-Potential-Based Prediction

    Full text link
    Using density-functional-based methods, we show that the hole-doped Li_{x}BC and Na_{x}BC in P6_{3}/mmc crystal structure and C_{x} in graphite structure are capable of showing superconductivity, possibly with a T_{c} much higher than that of MgB_{2}. We use full-potential methods to obtain the optimized lattice constants a and c, coherent-potential approximation to describe the effects of disorder, Gaspari-Gyorffy formalism to obtain the electron-phonon coupling constant λ\lambda, and Allen-Dynes equation to calculate T_{c} as a function of hole concentration in these alloys.Comment: 4 pages, 5 figure

    Extreme Electron-Phonon Coupling in Boron-based Layered Superconductors

    Full text link
    The phonon-mode decomposition of the electron-phonon coupling in the MgB2-like system Li_{1-x}BC is explored using first principles calculations. It is found that the high temperature superconductivity of such systems results from extremely strong coupling to only ~2% of the phonon modes. Novel characteristics of E_2g branches include (1) ``mode lambda'' values of 25 and greater compared to a mean of 0.4\sim 0.4 for other modes, (2) a precipitous Kohn anomaly, and (3) E_2g phonon linewidths within a factor of ~2 of the frequency itself, indicating impending breakdown of linear electron-phonon theory. This behavior in borne out by recent inelastic x-ray scattering studies of MgB2 by Shukla et al.Comment: 4 two-column pages, 4 figures. Equations simplified. Figure 4 changed. Comparison with new data include

    Acoustical-Mode-Driven Electron-Phonon Coupling in Transition-Metal Diborides

    Full text link
    We show that the electron-phonon coupling in the transition-metal diborides NbB2 and TaB2 is dominated by the longitudinal acoustical (LA) mode, in contrast to the optical E_{2g} mode dominated coupling in MgB2. Our ab initio results, described in terms of phonon dispersion, linewidth, and partial electron-phonon coupling along Gamma to A, also show that (i) NbB2 and TaB2 have a relatively weak electron-phonon coupling, (ii) the E_{2g} linewidth is an order of magnitude larger in MgB2 than in NbB2 or TaB2, (iii) the E_{2g} frequency in NbB2 and TaB2 is considerably higher than in MgB2, and (iv) the LA frequency at A for TaB2 is almost half of that of MgB2 or NbB2.Comment: 4 pages, 4 figures, and 1 tabl

    Wolf-Rayet Galaxies in the Sloan Digital Sky Survey: the metallicity dependence of the initial mass function

    Get PDF
    We use a large sample of 174 Wolf-Rayet (WR) galaxies drawn from the Sloan Digital Sky Survey to study whether and how the slope of the stellar initial mass function depends on metallicity. We calculate for each object its oxygen abundance according to which we divide our sample into four metallicity subsamples. For each subsample, we then measure three quantities: the equivalent width of \hb emission line, the equivalent width of WR bump around 4650\AA, and the WR bump-to-\hb intensity ratio, and compare to the predictions of the same quantities by evolutionary synthesis models of Schaerer & Vacca. Such comparisons lead to a clear dependence of the slope of initial mass function (α\alpha) on metallicity in that galaxies at higher metallicities tend to have steeper initial mass functions, with the slope index ranging from α\alpha\sim1.00 for the lowest metallicity of Z=0.001Z=0.001 to α\alpha\sim3.30 for the highest metallicity Z=0.02Z=0.02. We have carefully examined the possible sources of systematic error either in models or in our observational measurements and shown that these sources do not change this result.Comment: 12 pages, 6 figures, ApJ accepte

    8-Meth­oxy-3,3,5-trimethyl-3,11-dihydro­pyrano[3,2-a]carbazole

    Get PDF
    In the title compound, C19H19NO2, commonly called koenimbine, the pyran ring adopts a sofa conformation. The carbazole ring system is planar [r.m.s. deviation = 0.063 (1) Å]. A C(10) zigzag chain running along the b axis is formed through inter­molecular C—H⋯O hydrogen bonds. The chains are linked via weak C—H⋯π and N—H⋯π inter­actions

    First-Principles Calculation of the Superconducting Transition in MgB2 within the Anisotropic Eliashberg Formalism

    Full text link
    We present a study of the superconducting transition in MgB2 using the ab-initio pseudopotential density functional method and the fully anisotropic Eliashberg equation. Our study shows that the anisotropic Eliashberg equation, constructed with ab-initio calculated momentum-dependent electron-phonon interaction and anharmonic phonon frequencies, yields an average electron-phonon coupling constant lambda = 0.61, a transition temperature Tc = 39 K, and a boron isotope-effect exponent alphaB = 0.31 with a reasonable assumption of mu* = 0.12. The calculated values for Tc, lambda, and alphaB are in excellent agreement with transport, specific heat, and isotope effect measurements respectively. The individual values of the electron-phonon coupling lambda(k,k') on the various pieces of the Fermi surface however vary from 0.1 to 2.5. The observed Tc is a result of both the raising effect of anisotropy in the electron-phonon couplings and the lowering effect of anharmonicity in the relevant phonon modes.Comment: 4 pages, 3 figures, 1 tabl

    Implications of reflectance measurements on the mechanism for superconductivity in MgB2_2

    Full text link
    Recent optical studies in c-axis oriented superconducting MgB2_2 films indicate that the electron-phonon coupling is weak [tu01]. We reinforce this conclusion by examining the raw reflectance data; its frequency dependence is incompatible with strong electron-phonon scattering. This is further strengthened by analysis of the real part of the conductivity, and by the temperature dependence of the effective Drude scattering rate. Using a realistic electron-phonon spectral shape [kong01], we find λtr0.15\lambda_{\rm tr} \approx 0.15, in agreement with Tu et al. [tu01]. To the extent that λtrλ\lambda_{\rm tr} \approx \lambda, this disagrees sharply with model calculations [kong01,kortus01,an01], and is far too low to provide the means for Tc=39T_c = 39 K. A simple model is constructed with coupling to a high frequency excitation, which is consistent with both the low frequency optical data and the high TcT_c.Comment: 4 pages, 4 figure

    Constraints from TcT_c and the isotope effect for MgB2_2

    Full text link
    With the constraint that Tc=39T_c = 39 K, as observed for MgB2_2, we use the Eliashberg equations to compute possible allowed values of the isotope coefficient, β\beta. We find that while the observed value β=0.32\beta= 0.32 can be obtained in principle, it is difficult to reconcile a recently calculated spectral function with such a low observed value
    corecore