21 research outputs found
Distinct Subgroups in Hypertrophic Cardiomyopathy in the NHLBI HCM Registry.
BACKGROUND: The HCMR (Hypertrophic Cardiomyopathy Registry) is a National Heart, Lung, and Blood Institute-funded, prospective registry of 2,755 patients with hypertrophic cardiomyopathy (HCM) recruited from 44 sites in 6 countries. OBJECTIVES: The authors sought to improve risk prediction in HCM by incorporating cardiac magnetic resonance (CMR), genetic, and biomarker data. METHODS: Demographic and echocardiographic data were collected. Patients underwent CMR including cine imaging, late gadolinium enhancement imaging (LGE) (replacement fibrosis), and T1 mapping for measurement of extracellular volume as a measure of interstitial fibrosis. Blood was drawn for the biomarkers N-terminal pro-B-type natriuretic peptide (NT-proBNP) and high-sensitivity cardiac troponin T (cTnT), and genetic analysis. RESULTS: A total of 2,755 patients were studied. Mean age was 49 ± 11 years, 71% were male, and 17% non-white. Mean ESC (European Society of Cardiology) risk score was 2.48 ± 0.56. Eighteen percent had a resting left ventricular outflow tract (LVOT) gradient â„30 mm Hg. Thirty-six percent had a sarcomere mutation identified, and 50% had any LGE. Sarcomere mutation-positive patients were more likely to have reverse septal curvature morphology, LGE, and no significant resting LVOT obstruction. Those that were sarcomere mutation negative were more likely to have isolated basal septal hypertrophy, less LGE, and more LVOT obstruction. Interstitial fibrosis was present in segments both with and without LGE. Serum NT-proBNP and cTnT levels correlated with increasing LGE and extracellular volume in a graded fashion. CONCLUSIONS: The HCMR population has characteristics of low-risk HCM. Ninety-three percent had no or only mild functional limitation. Baseline data separated patients broadly into 2 categories. One group was sarcomere mutation positive and more likely had reverse septal curvature morphology, more fibrosis, but less resting obstruction, whereas the other was sarcomere mutation negative and more likely had isolated basal septal hypertrophy with obstruction, but less fibrosis. Further follow-up will allow better understanding of these subgroups and development of an improved risk prediction model incorporating all these markers
The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope: I. Overview of the instrument and its capabilities
We provide an overview of the design and capabilities of the near-infrared
spectrograph (NIRSpec) onboard the James Webb Space Telescope. NIRSpec is
designed to be capable of carrying out low-resolution () prism
spectroscopy over the wavelength range m and higher resolution
( or ) grating spectroscopy over
m, both in single-object mode employing any one of five fixed
slits, or a 3.13.2 arcsec integral field unit, or in multiobject
mode employing a novel programmable micro-shutter device covering a
3.63.4~arcmin field of view. The all-reflective optical chain of
NIRSpec and the performance of its different components are described, and some
of the trade-offs made in designing the instrument are touched upon. The
faint-end spectrophotometric sensitivity expected of NIRSpec, as well as its
dependency on the energetic particle environment that its two detector arrays
are likely to be subjected to in orbit are also discussed
Recommended from our members
The Near-Infrared Spectrograph (NIRSpec) on the James Webb Space Telescope: I. Overview of the instrument and its capabilities
We provide an overview of the design and capabilities of the near-infrared
spectrograph (NIRSpec) onboard the James Webb Space Telescope. NIRSpec is
designed to be capable of carrying out low-resolution () prism
spectroscopy over the wavelength range m and higher resolution
( or ) grating spectroscopy over
m, both in single-object mode employing any one of five fixed
slits, or a 3.13.2 arcsec integral field unit, or in multiobject
mode employing a novel programmable micro-shutter device covering a
3.63.4~arcmin field of view. The all-reflective optical chain of
NIRSpec and the performance of its different components are described, and some
of the trade-offs made in designing the instrument are touched upon. The
faint-end spectrophotometric sensitivity expected of NIRSpec, as well as its
dependency on the energetic particle environment that its two detector arrays
are likely to be subjected to in orbit are also discussed
Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens
Plants contain numerous components that are important sources of new bioactive molecules with antimicrobial properties. Isothiocyanates (ITCs) are plant secondary metabolites found in cruciferous vegetables that are arising as promising antimicrobial agents in food industry. The aim of this study was to assess the antibacterial activity of two isothiocyanates (ITCs), allylisothiocyanate (AITC) and 2-phenylethylisothiocyanate (PEITC) against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Listeria monocytogenes. The antibacterial mode of action was also characterized by the assessment of different physiological indices: membrane integrity, intracellular potassium release, physicochemical surface properties and surface charge. The minimum inhibitory concentration (MIC) of AITC and PEITC was 100 g/mL for all bacteria. The minimum bactericidal concentration (MBC) of the ITCs was at least 10 times higher than the MIC. Both AITC and PEITC changed the membrane properties of the bacteria decreasing their surface charge and compromising the integrity of the cytoplasmatic membrane with consequent potassium leakage and propidium iodide uptake. The surface hydrophobicity was also non-specifically altered (E. coli and L. monocytogenes become less hydrophilic; P. aeruginosa and S. aureus become more hydrophilic). This study shows that AITC and PEITC have strong antimicrobial potential against the bacteria tested, through the disruption of the bacterial cell membranes. Moreover, phytochemicals are highlighted as a valuable sustainable source of new bioactive products.This work was supported by the Operational Programme for Competitiveness Factors - COMPETE and by the Portuguese Foundation for Science and Technology through Project Phytodisinfectants - PTDC/DTP-SAP/1078/2012 (COMPETE: FCOMP-01-0124-FEDER-028765), the PhD grant awarded to Ana Abreu (SFRH/BD/84393/2012), and the post-doctoral grants awarded to Anabela Borges (SFRH/BPD/98684/2013) and Lucia C. Simoes (SFRH/BPD/81982/2011). Also, this work was undertaken as part of the European Research Project SUSCLEAN (Contract no FP7-KBBE-2011-5, project number: 287514) and the COST Action FA1202. The authors are solely responsible for this work. It does not represent the opinion of the European Community, and the Community is not responsible for any use that might be made of data appearing herein
An NF-ÎșB and Slug Regulatory Loop Active in Early Vertebrate Mesoderm
BACKGROUND: In both Drosophila and the mouse, the zinc finger transcription factor Snail is required for mesoderm formation; its vertebrate paralog Slug (Snai2) appears to be required for neural crest formation in the chick and the clawed frog Xenopus laevis. Both Slug and Snail act to induce epithelial to mesenchymal transition (EMT) and to suppress apoptosis. METHODOLOGY & PRINCIPLE FINDINGS: Morpholino-based loss of function studies indicate that Slug is required for the normal expression of both mesodermal and neural crest markers in X. laevis. Both phenotypes are rescued by injection of RNA encoding the anti-apoptotic protein Bcl-xL; Bcl-xL's effects are dependent upon IÎșB kinase-mediated activation of the bipartite transcription factor NF-ÎșB. NF-ÎșB, in turn, directly up-regulates levels of Slug and Snail RNAs. Slug indirectly up-regulates levels of RNAs encoding the NF-ÎșB subunit proteins RelA, Rel2, and Rel3, and directly down-regulates levels of the pro-apopotic Caspase-9 RNA. CONCLUSIONS/SIGNIFICANCE: These studies reveal a Slug/SnailâNF-ÎșB regulatory circuit, analogous to that present in the early Drosophila embryo, active during mesodermal formation in Xenopus. This is a regulatory interaction of significance both in development and in the course of inflammatory and metastatic disease