319 research outputs found

    A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes.

    Get PDF
    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including "codon capture," "genome streamlining," and "ambiguous intermediate" theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNA(Ala) containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects

    Proteogenomics analysis of CUG codon translation in the human pathogen Candida albicans

    Get PDF
    Abstract Background: Yeasts of the CTG-clade lineage, which includes the human-infecting Candida albicans, Candida parapsilosis and Candida tropicalis species, are characterized by an altered genetic code. Instead of translating CUG codons as leucine, as happens in most eukaryotes, these yeasts, whose ancestors are thought to have lost the relevant leucine-tRNA gene, translate CUG codons as serine using a serine-tRNA with a mutated anticodon, tRNASer CAG . Previously reported experiments have suggested that 3–5% of the CTG-clade CUG codons are mistranslated as leucine due to mischarging of the tRNA Ser CAG . The mistranslation was suggested to result in variable surface proteins explaining fast host adaptation and pathogenicity. Results: In this study, we reassess this potential mistranslation by high-resolution mass spectrometry-based proteogenomics of multiple CTG-clade yeasts, including various C. albicans strains, isolated from colonized and from infected human body sites, and C. albicans grown in yeast and hyphal forms. Our data do not support a bias towards CUG codon mistranslation as leucine. Instead, our data suggest that (i) CUG codons are mistranslated at a frequency corresponding to the normal extent of ribosomal mistranslation with no preference for specific amino acids, (ii) CUG codons are as unambiguous (or ambiguous) as the related CUU leucine and UCC serine codons, (iii) tRNA anticodon loop variation across the CTG-clade yeasts does not result in any difference of the mistranslation level, and (iv) CUG codon unambiguity is independent of C. albicans’ strain pathogenicity or growth form. Conclusions: Our findings imply that C. albicans does not decode CUG ambiguously. This suggests that the proposed misleucylation of the tRNA Ser CAG might be as prevalent as every other misacylation or mistranslation event and, if at all, be just one of many reasons causing phenotypic diversity

    Axonopathy in the central nervous system is the hallmark of mice with a novel intragenic null mutation of dystonin.

    No full text
    Dystonia musculorum is a neurodegenerative disorder caused by a mutation in the dystonin gene. It has been described in mice and humans where it is called hereditary sensory autonomic neuropathy. Mutated mice show severe movement disorders and die at the age of 3-4 weeks. This study describes the discovery and molecular, clinical, as well as pathological characterization of a new spontaneously occurring mutation in the dystonin gene in C57BL/6N mice. The mutation represents a 40-kb intragenic deletion allele of the dystonin gene on chromosome 1 with exactly defined deletion borders. It was demonstrated by Western blot, mass spectrometry, and immunohistology that mice with a homozygous mutation were entirely devoid of the dystonin protein. Pathomorphological lesions were restricted to the brain stem and spinal cord and consisted of swollen, argyrophilic axons and dilated myelin sheaths in the white matter and, less frequently, total chromatolysis of neurons in the gray matter. Axonal damage was detected by amyloid precursor protein and nonphosphorylated neurofilament immunohistology. Axonopathy in the central nervous system (CNS) represents the hallmark of this disease. Mice with the dystonin mutation also showed suppurative inflammation in the respiratory tract, presumably due to brain stem lesion-associated food aspiration, whereas skeletal muscles showed no pathomorphological changes. This study describes a novel mutation in the dystonin gene in mice leading to axonopathy in the CNS. In further studies, this model may provide new insights into the pathogenesis of neurodegenerative diseases and may elucidate the complex interactions of dystonin with various other cellular proteins especially in the CNS

    The low-lying excitations of polydiacetylene

    Full text link
    The Pariser-Parr-Pople Hamiltonian is used to calculate and identify the nature of the low-lying vertical transition energies of polydiacetylene. The model is solved using the density matrix renormalisation group method for a fixed acetylenic geometry for chains of up to 102 atoms. The non-linear optical properties of polydiacetylene are considered, which are determined by the third-order susceptibility. The experimental 1Bu data of Giesa and Schultz are used as the geometric model for the calculation. For short chains, the calculated E(1Bu) agrees with the experimental value, within solvation effects (ca. 0.3 eV). The charge gap is used to characterise bound and unbound states. The nBu is above the charge gap and hence a continuum state; the 1Bu, 2Ag and mAg are not and hence are bound excitons. For large chain lengths, the nBu tends towards the charge gap as expected, strongly suggesting that the nBu is the conduction band edge. The conduction band edge for PDA is agreed in the literature to be ca. 3.0 eV. Accounting for the strong polarisation effects of the medium and polaron formation gives our calculated E(nBu) ca. 3.6 eV, with an exciton binding energy of ca. 1.0 eV. The 2Ag state is found to be above the 1Bu, which does not agree with relaxed transition experimental data. However, this could be resolved by including explicit lattice relaxation in the Pariser- Parr-Pople-Peierls model. Particle-hole separation data further suggest that the 1Bu, 2Ag and mAg are bound excitons, and that the nBu is an unbound exciton.Comment: LaTeX, 23 pages, 4 postscript tables and 8 postscript figure

    Role of Portal Vein Embolization in Hepatocellular Carcinoma Management and Its Effect on Recurrence: A Case-control Study

    Get PDF
    Background Liver regeneration that occurs after portal vein embolization (PVE) may have adverse effects on the microscopic tumor foci in the residual liver mass in patients with hepatocellular carcinoma (HCC). Methods Fifty-four HCC patients with inadequate functional residual liver volume were offered PVE during a seven-year period. Among them, 34 (63%) patients underwent curative resection. They were compared with a matched control group (n = 102) who underwent surgery without PVE. Postoperative complications, pattern of recurrence, and survival were compared between groups. Results In the PVE group, a pre-embolization functional residual liver volume of 23% (12-33.5%) improved to 34% (20-54%) (p = 0.005) at the time of surgery. When the two groups were compared, minor (PVE, 24%; control, 29%; p = 0.651) and major (PVE, 18%; control, 15%; p = 0.784) complications were similar. After a follow-up period of 35 months (standard deviation 25 months), extrahepatic recurrences were detected in 10 PVE patients (29%) and 41 control patients (40%) (p = 0.310). Intrahepatic recurrences were seen in 10 (29%) and 47 (46%) cases (p = 0.109) in the PVE and control groups, respectively. In the PVE group, 41% (n = 14) of the recurrences were detected before one year, compared with 42% (n = 43) in the control group (p = 1). Disease-free survival rates at 1, 3, and 5 years were 57, 29, and 26% in the control group and 60, 42, and 42% in the PVE group (log-rank, p = 0.335). On multivariate analysis, PVE was not a factor affecting survival (p = 0.821). Conclusions Portal vein embolization increases the resectability of initially unresectable HCC due to inadequate functional residual liver volume, and it has no deleterious oncological effect after major resection of HCC. © The Author(s) 2012.published_or_final_versionSpringer Open Choice, 28 May 201

    Genomic analysis of focal nodular hyperplasia with associated hepatocellular carcinoma unveils its malignant potential: a case report.

    Get PDF
    Background Focal nodular hyperplasia (FNH) is typically considered a benign tumor of the liver without malignant potential. The co-occurrence of FNH and hepatocellular carcinoma (HCC) has been reported in rare cases. In this study we sought to investigate the clonal relationship between these lesions in a patient with FNH-HCC co-occurrence. Methods A 74-year-old female patient underwent liver tumor resection. The resected nodule was subjected to histologic analyses using hematoxylin and eosin stain and immunohistochemistry. DNA extracted from microdissected FNH and HCC regions was subjected to whole exome sequencing. Clonality analysis were performed using PyClone. Results Histologic analysis reveals that the nodule consists of an FNH and two adjoining HCC components with distinct histopathological features. Immunophenotypic characterization and genomic analyses suggest that the FNH is clonally related to the HCC components, and is composed of multiple clones at diagnosis, that are likely to have progressed to HCC through clonal selection and/or the acquisition of additional genetic events. Conclusion To the best of our knowledge, our work is the first study showing a clonal relationship between FNH and HCC. We show that FNH may possess the capability to undergo malignant transformation and to progress to HCC in very rare cases

    Adequate debridement and drainage of the mediastinum using open thoracotomy or video-assisted thoracoscopic surgery for Boerhaave’s syndrome

    Get PDF
    Background Boerhaave's syndrome has a high mortality rate (14-40%). Surgical treatment varies from a minimal approach consisting of adequate debridement with drainage of the mediastinum and pleural cavity to esophageal resection. This study compared the results between a previously preferred open minimal approach and a video-assisted thoracoscopic surgery (VATS) procedure currently considered the method of choice. Methods In this study, 12 consecutive patients treated with a historical nonresectional drainage approach (1985-2001) were compared with 12 consecutive patients treated prospectively after the introduction of VATS during the period 2002-2009. Baseline characteristics were equally distributed between the two groups. Results In the prospective group, 2 of the 12 patients had the VATS procedure converted to an open thoracotomy, and 2 additional patients were treated by open surgery. In the prospective group, 8 patients experienced postoperative complications compared with all 12 patients in the historical control group. Four patients (17%), two in each group, underwent reoperation. Six patients, three in each group, were readmitted to the hospital. The overall in-hospital mortality was 8% (1 patient in each group), which compares favorably with other reports (7-27%) based on drainage alone. Conclusions Adequate surgical debridement with drainage of the mediastinum and pleural cavity resulted in a low mortality rate. The results for VATS in this relatively small series were comparable with those for an open thoracotomy

    Stimulatory MAIT cell antigens reach the circulation and are efficiently metabolised and presented by human liver cells.

    Get PDF
    OBJECTIVE Mucosal-associated invariant T (MAIT) cells are the most abundant T cells in human liver. They respond to bacterial metabolites presented by major histocompatibility complex-like molecule MR1. MAIT cells exert regulatory and antimicrobial functions and are implicated in liver fibrogenesis. It is not well understood which liver cells function as antigen (Ag)-presenting cells for MAIT cells, and under which conditions stimulatory Ags reach the circulation. DESIGN We used different types of primary human liver cells in Ag-presentation assays to blood-derived and liver-derived MAIT cells. We assessed MAIT cell stimulatory potential of serum from healthy subjects and patients with portal hypertension undergoing transjugular intrahepatic portosystemic shunt stent, and patients with inflammatory bowel disease (IBD). RESULTS MAIT cells were dispersed throughout healthy human liver and all tested liver cell types stimulated MAIT cells, hepatocytes being most efficient. MAIT cell activation by liver cells occurred in response to bacterial lysate and pure Ag, and was prevented by non-activating MR1 ligands. Serum derived from peripheral and portal blood, and from patients with IBD stimulated MAIT cells in MR1-dependent manner. CONCLUSION Our findings reveal previously unrecognised roles of liver cells in Ag metabolism and activation of MAIT cells, repression of which creates an opportunity to design antifibrotic therapies. The presence of MAIT cell stimulatory Ags in serum rationalises the observed activated MAIT cell phenotype in liver. Increased serum levels of gut-derived MAIT cell stimulatory ligands in patients with impaired intestinal barrier function indicate that intrahepatic Ag-presentation may represent an important step in the development of liver disease

    Granulocyte-colony stimulating factor (G-CSF) for stroke: an individual patient data meta-analysis

    Get PDF
    Granulocyte colony stimulating factor (G-CSF) may enhance recovery from stroke through neuroprotective mechanisms if administered early, or neurorepair if given later. Several small trials suggest administration is safe but effects on efficacy are unclear. We searched for randomised controlled trials (RCT) assessing G-CSF in patients with hyperacute, acute, subacute or chronic stroke, and asked Investigators to share individual patient data on baseline characteristics, stroke severity and type, end-of trial modified Rankin Scale (mRS), Barthel Index, haematological parameters, serious adverse events and death. Multiple variable analyses were adjusted for age, sex, baseline severity and time-to-treatment. Individual patient data were obtained for 6 of 10 RCTs comprising 196 stroke patients (116 G-CSF, 80 placebo), mean age 67.1 (SD 12.9), 92% ischaemic, median NIHSS 10 (IQR 5-15), randomised 11 days (interquartile range IQR 4-238) post ictus; data from three commercial trials were not shared. G-CSF did not improve mRS (ordinal regression), odds ratio OR 1.12 (95% confidence interval 0.64 to 1.96, p=0.62). There were more patients with a serious adverse event in the G-CSF group (29.6% versus 7.5%, p=0.07) with no significant difference in all-cause mortality (G-CSF 11.2%, placebo 7.6%, p=0.4). Overall, G-CSF did not improve stroke outcome in this individual patient data meta-analysis
    corecore