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Granulocyte-Colony Stimulating 
Factor (G-CSF) for stroke: an 
individual patient data meta-
analysis
Timothy J. England1, Nikola Sprigg2, Andrey M. Alasheev3, Andrey A. Belkin3, Amit Kumar4, 
Kameshwar Prasad4 & Philip M. Bath2

Granulocyte colony stimulating factor (G-CSF) may enhance recovery from stroke through 
neuroprotective mechanisms if administered early, or neurorepair if given later. Several small trials 
suggest administration is safe but effects on efficacy are unclear. We searched for randomised controlled 
trials (RCT) assessing G-CSF in patients with hyperacute, acute, subacute or chronic stroke, and asked 
Investigators to share individual patient data on baseline characteristics, stroke severity and type, 
end-of-trial modified Rankin Scale (mRS), Barthel Index, haematological parameters, serious adverse 
events and death. Multiple variable analyses were adjusted for age, sex, baseline severity and time-to-
treatment. Individual patient data were obtained for 6 of 10 RCTs comprising 196 stroke patients (116 
G-CSF, 80 placebo), mean age 67.1 (SD 12.9), 92% ischaemic, median NIHSS 10 (IQR 5–15), randomised 
11 days (interquartile range IQR 4–238) post ictus; data from three commercial trials were not shared. 
G-CSF did not improve mRS (ordinal regression), odds ratio OR 1.12 (95% confidence interval 0.64 
to 1.96, p = 0.62). There were more patients with a serious adverse event in the G-CSF group (29.6% 
versus 7.5%, p = 0.07) with no significant difference in all-cause mortality (G-CSF 11.2%, placebo 7.6%, 
p = 0.4). Overall, G-CSF did not improve stroke outcome in this individual patient data meta-analysis.

The impact of stroke on individuals, carers and society is huge and is the third leading cause of death worldwide1. 
Recent progress in acute treatments is encouraging (e.g. mechanical thrombectomy) but they can often only apply 
to a small proportion of the stroke population. Beyond the acute phase there are very few effective treatments and 
novel approaches are required.

An ischaemic stroke leads to mobilisation of CD34+  haematopoietic stem cells (HSC), which occurs in 
bursts over the first 10 days post stroke2,3; those with higher levels of CD34+  cell mobilisation have a better 
neurological outcome2. Intentional recruitment of CD34+  HSCs from bone marrow to peripheral blood with 
granulocyte-colony stimulating factor (G-CSF) is a clinical process termed peripheral blood stem cell (PBSC) 
mobilisation. Although the mechanism is poorly understood, G-CSF alone or with chemotherapy is used rou-
tinely in clinical practice to reduce the duration of neutropenia in patients with haematological disease, or for 
mobilising and harvesting HSCs for subsequent autologous or allogenic infusion. Its use in stroke is under inves-
tigation in both animals and humans.

In experimental ischaemic stroke, a number of groups have demonstrated G-CSF to be neuroprotective at 
various doses4, in the presence of thrombolysis5, induce functional recovery6 and promote angiogenesis and neu-
rogenesis7,8. G-CSF given early causes a reduction in stroke lesion volume9. Consequentially, the use of G-CSF in 
stroke has progressed into phase II/III clinical trials analysing the effects of G-CSF in hyperacute, acute, subacute 
and chronic stroke. We have therefore performed an individual patient data meta-analysis on the effects of G-CSF 
on stroke with the following aims:
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(1) To assess the safety of G-CSF administered after ischaemic and haemorrhagic stroke in an individual patient 
data meta-analysis.

(2) To assess the efficacy of G-CSF treatment after ischaemic and haemorrhagic stroke.
(3) To assess the effect of time of administration on safety and efficacy.

Results
The initial search highlighted 310 publications; once duplicates, non-stroke studies, experimental studies and 
review articles were excluded, a total of 10 randomised controlled trials were identified (Table 1)10–19. We received 
individual patient data from 5 trials10,14,15,17,19,20 and there was sufficient detail in the primary publication of 
another trial to be included in the analysis11. Risk of bias in the included studies has been previously reported in 
our Cochrane review21, which did not include results from one trial included in this analysis19.

One study could only be identified as an abstract (so was not included after attempted contact with the 
author)12, and there was no response from the Chief Investigators of three commercial trials (company Axaron/
Sygnis) following repeated attempts13,16,18. A recent meta-analysis of Chinese origin describing results in favour 
of G-CSF includes 4 Chinese publications that did not appear in our systematic searches22. Attempts to obtain 
further detail on these publications from the authors were unsuccessful.

Data comprising 196 stroke patients (116 G-CSF, 80 placebo) revealed a mean age 67.1 (standard deviation, 
SD 12.9), 92% ischaemic stroke, mean NIHSS 10.3 (SD 5.8), and randomisation at 11 days (interquartile range, 
IQR, 4–238) post ictus (Table 2). Although the data were more limited, the groups appeared to be reasonably well 
matched for stroke risk factors including hypertension, diabetes and dyslipidaemia (Table 2).

In univariate and covariate-adjusted analyses (ordinal logistic regression), there was no significant difference 
between treatment with G-CSF and placebo for end-of-trial mRS: odds ratio (OR) 1.12, 95% confidence interval 
(CI) 0.64 to 1.96 (p =  0.69), Table 3. There was also no significant difference between groups in NIHSS or Barthel 
Index (analysed by ANCOVA). A total of 16 (8%) haemorrhagic strokes meant there were too few cases to per-
form analysis of the effects of G-CSF by stroke pathology. Treatment with G-CSF did not significantly affect out-
come (mRS) in different stroke subtypes according to the Oxford Clinical Stroke Project (OCSP) classification23, 
when compared to placebo (data not shown). There was a non-significant trend towards improved Health Utility 
Status scores in the treatment group (adjusted mean difference 0.088, p =  0.11, Table 3).

Ordinal analysis indicated a mild but significant influence on outcome in those whom received the treatment/
placebo at later time points, OR 1.002, 95% CI 1.0004 to 1.0037 p =  0.015. There was no significant interaction, 
however, between treatment allocation and time of administration (p =  0.40) within the ordinal model. The effect 
of time of administration is also represented in Fig. 1 whereby the end-of-trial mRS scores are categorised by 
time-to-treatment. The data represents mean differences in mRS scores between treatment and placebo groups 
and is subdivided into hyperacute, acute, subacute and chronic administration times. The figure demonstrates 

Study Design Participants Interventions
Time of 
administration Comments on the study

Hyperacute administration

 AXIS 2010* Double blind RCT, 
dose escalation

N =  44, ischaemic 
MCA stroke

G-CSF (Filgrastim), i.v. 30-180 μ g/kg or 
placebo over 3 days < 12 hours G-CSF appears safe

 AXIS-2 2013* Double blind RCT N =  328 ischaemic 
MCA stroke

G-CSF (Filgrastim), i.v. 135 mcg/kg or 
placebo < 9 hours G-CSF appears safe. No beneficial 

effect of G-CSF observed

Acute & subacute administration

 Prasad 2011 Open label RCT N =  10, ischaemic 
stroke

G-CSF (Filgrastim) s.c. 10 μ g/kg or 
placebo for 5 days (no placebo) < 7 days G-CSF appears safe

 Shyu 2006 Single blind RCT N =  10, ischaemic 
stroke

G-CSF (Filgrastim) s.c. 15 μ g/kg or 
placebo for 5 days < 7 days G-CSF appears safe. Improvement in 

NIHSS, ESS and BI at 12 months

 STEMS-1 2006 Double blind RCT, 
dose escalation 

N =  36, ischaemic 
stroke 

G-CSF (Filgrastim) s.c. 1-10 μ g/kg or 
placebo for 1 or 5 doses 7 to 30 days G-CSF mobilises PBSCs post stroke, 

appears safe

 STEMS-2 2010 Double blind RCT
N =  60, ischaemic 
or haemorrhagic 
stroke

G-CSF (Filgrastim) s.c. 10 μ g/kg or 
placebo (2:1) for 5 days 3 to 30 days G-CSF appears safe. PBSCs tracked 

in vivo

 STEMTHER 2010 Open label RCT N =  20, ischaemic 
stroke

G-CSF (Leukostim) s.c. 10 μ g/kg for 5 
days (no placebo) < 48 hours G-CSF appears safe

 Zhang 2006* Double blind RCT N =  45, ischaemic 
stroke G-CSF 2 μ g/kg s.c. for 5 days < 7 days Improved NIHSS by day 20 in the 

G-CSF group. Abstract only.

Chronic administration

 Floel 2011* Double blind RCT N =  41, ischaemic 
stroke

G-CSF (Filgrastim) s.c. 10 μ g/kg or 
placebo for 10 days > 4months Feasible and safe administration

 STEMS-3 Double blind 2 ×  2 
factorial RCT

N =  60, ischaemic 
or haemorrhagic 
stroke

G-CSF (Filgrastim) s.c. 10 μ g/kg or 
placebo s.c. for 5 days, & PT vs. no PT

3 months to 2 
years

G-CSF appears safe in chronic stroke 
and improves quality of life

Table 1.  Trial design of identified randomised controlled trials of G-CSF and stroke. *Not included in 
the independent patient data analysis; RCT, randomised controlled trial; MCA, middle cerebral artery; i.v, 
intravenous; s.c., subcutaneous; NIHSS, National Institutes of Health stroke scale; ESS, European Stroke Scale; 
BI, Barthel index; PBSC, peripheral blood stem cells; PT physiotherapy.
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chronic administration trending towards favouring G-CSF, and earlier hyperacute and acute administration 
trending to favour placebo. Of note, in this summary analysis, we have included data from AXIS-218 despite being 
unable to obtain individual patient data from the commercial sponsor; we extracted the mean mRS score from 
each treatment group in this study and calculated the standard deviation from confidence intervals published, 
thereby providing the data in the hyperacute category.

There were more serious adverse events in the G-CSF group, not reaching significance (p =  0.07, unadjusted 
analysis); rate of death did not differ between the groups (G-CSF 7% vs. control 4%, p =  0.34, Table 3). There 
were no reports of new or recurrent haemorrhagic strokes in either group (although one suffered with haemor-
rhagic transformation of infarction in the control group) and there was no significant difference in the number of 
vaso-occlusive events, incorporating arterial ischaemia and veno-occlusive disease, by end-of-trial. The distribu-
tion of the timing of the vascular events, relative to the first dose of G-CSF, did not differ between groups (log rank 
test p =  0.51). There was no significant relationship between peak white cell count and vascular events.

Discussion
G-CSF offers a potential multimodal therapy for both ischaemic and haemorrhagic strokes and this individual 
patient data meta-analysis has highlighted a number of areas requiring further exploration. Overall, G-CSF had 
a neutral impact on functional outcome, the modified Rankin score. The time of G-CSF administration signifi-
cantly influenced functional outcome but no interaction between G-CSF and time was observed, which might be 
expected if this significant finding was secondary to a G-CSF treatment effect. Patients treated with G-CSF were 
1.8 times more likely to suffer from a serious adverse event but this was not statistically significant (p =  0.11 in 
adjusted analyses).

To determine the optimal time of G-CSF administration, it is best considered in two distinct paradigms: 
G-CSF enhancing neuroprotection or neurorepair. Two randomised controlled trials have explored the former, 
AXIS 1 and 218,24, administering G-CSF in the hyperacute phase. AXIS-1 reported a small safety study in 44 
patients within 12 hours of stroke onset, whilst the follow up trial, AXIS-2, enrolled 328 patients with ischaemic 
stroke in the MCA territory within 9 hours. There was no difference in efficacy between treatment and placebo 
groups: G-CSF mean mRS 3.31 (95% CI 3.06–3.56) vs placebo mRS 3.12 (95% CI 2.87–3.37). There were no 
significant differences in safety or mortality between groups though the absolute number of deaths was higher 
in the treatment group (22% vs 18%, p =  0.4). These neutral results suggest that assessment of G-CSF in the 
hyperacute phase of stroke is unlikely to continue. A potential reason for treatment failure could simply be due to 
giving the drug too late; the preclinical data suggests efficacy if given with 4 hours post onset9, whilst mean time 
to treatment in AXIS-2 was 7 hours. The inability to translate promising pre-clinical treatments to the bedside is 
also a likely consequence of the experimental models not adequately simulating human stroke. Whilst G-CSF has 
been shown to be effective in aged rodent models and in models with co-morbidities25–27, the problems of age and 

Placebo G-CSF All

n =  80 n =  116 n =  196

Age 66 (13.1) 67.8 (12.8) 67.1 (12.9)

Male 45 (56.3) 65 (56) 110 (56)

Days from stroke 11.5 [5–286] 10 [4–120] 11 [4–238]

Type

 Ischaemic 73 (91.3) 107 (92.2) 180 (92)

 Haemorrhagic 7 (8.8) 9 (7.8) 16 (8)

Baseline NIHSS 9.6 (5.5) 10.7 (6.1) 10.3 (5.8)

n =  67 n =  99 n =  166

Hypertension 44 (65.7) 64 (64.6) 108 (65)

Diabetes 13 (19.4) 21 (21.2) 34 (20.5)

Dyslipidaemia 30 (44.8) 48 (48.5) 78 (47)

n =  62 n =  94 n =  156

Atrial Fibrillation 13 (21) 17 (18.1) 30 (19.2)

Previous stroke 12 (19.4) 21 (22.3) 33 (21.2)

Previous TIA 9 (14.5) 14 (14.9) 23 (14.7)

IHD 14 (22.6) 24 (25.5) 38 (24.4)

PVD 2 (2.2) 2 (3.1) 4 (2.6)

OCSP Classification

 LACS 15 (18.8) 19 (16.4) 34 (17.3)

 PACS 18 (22.5) 32 (27.6) 50 (25.5)

 TACS 26 (32.5) 39 (33.6) 65 (33.2)

 POCS 3 (3.8) 4 (3.4) 7 (3.6)

Table 2.  Baseline characteristics. N(%); median [interquartile range]; IHD, ischaemic heart disease; PVD, 
peripheral vascular. disease; TIA, transient ischaemic attack; OCSP, Oxford Clinical Stroke Project; LACS, 
lacuna. syndrome; PACS, partial anterior circulation stroke; TACS, total anterior circulation stroke. POCS, 
posterior circulation stroke.
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co-pathologies are often concurrently present in clinical studies, which may be a significant factor in the failure of 
phase II/III trials. Furthermore, the aging brain is more susceptible to ischaemic damage, demonstrating earlier 
inflammatory responses to ischaemia28 and impaired neurogenesis in the peri-infarct area29, which can poten-
tially inhibit neurological recovery.

Chronic administration tests the concept of neurorepair, recovery derived through mobilisation of peripheral 
blood stem cells (or CD34+  cells). Most pre-clinical data, however, have been developed in models that admin-
ister the drug in the hyperacute phase9, and the mechanism of recovery is thought largely to be secondary to 
attenuation of apoptosis in the ischaemic penumbra7. However, independent of this, neurogenesis in areas remote 
to the infarct is seen following treatment with G-CSF30. G-CSF also promotes neurogenesis and angiogenesis in 
peri-ischaemic areas8.

Preclinical studies of G-CSF administration in the subacute phase have been performed with additional hae-
matopoietic cytokines. G-CSF in combination with stem cell factor (SCF) given daily 11–20 days post-stroke 

Placebo G-CSF

Unadjusted Odds Ratio 
or Between-Group 

Difference (95% CI) P value

Adjusted Odds Ratio 
or Between-Group 

Difference (95% CI)* P value

n =  79 n =  116

N° with SAE† 14 (7.5) 34 (29.6) 1.93 (0.95 to 3.89) 0.07 1.82 (0.89–3.75) 0.10

Death end of trial† 3 (3.8) 8 (7.0) 1.88 (0.48 to 7.3) 0.36 1.49 (0.36–6.16) 0.59

Vascular occlusive events† 6 (7.6) 12 (11.2) 1.42 (0.51 to 3.96) 0.52 1.21 (0.43–3.45) 0.72

n =  73 n =  109

End of trial mRS‡ 3.03 (1.3) 3.26 (1.3) 1.3 (0.8 to 2.2) 0.24 1.12 (0.64 to 1.96) 0.62

n =  72 n =  114

End of trial NIHSS§ 7.7 (8.5) 9.2 (10.7) 1.6 (− 1.5 to 4.5) 0.30 0.7 (− 1.9 to 3.2) 0.62

n =  75 n =  114

End of trial BI§ 67.1 (29.6) 63.3 (34.4) − 3.8 (− 13.4 to 5.7) 0.43 − 0.5 (− 7.6 to 6.7) 0.90

n =  56 n =  83

Health Utility Index§ 0.392 (0.364) 0.463 (0.338) 0.071 (− 0.048 to 0.19) 0.24 0.088 (− 0.019 to 0.195) 0.11

n =  80 n =  116

Peak WCC 7.46 (3.46) 31.34 (17.54) 23.88 (19.96–27.8) < 0.0001 23.83 (19.87–27.8) < 0.0001

Table 3.  The effect of G-CSF compared to placebo on secondary outcome measures. Data shown are 
number (%) for categorical events, mean (standard deviation) for mRS, NIHSS and BI. *Adjusted for age, 
sex, baseline NIHSS and time-to-treatment. Analysed by †Logistic regression ‡ordinal logistic regression and 
§ANCOVA. mRS, modified Rankin scale; NIHSS, National Institutes of Health Stroke Scale; BI, Barthel index; 
SAE, serious adverse event; OR odds ratio; CI, confidence interval; WCC, white cell count.

Figure 1. The effect of time of administration on end-of-trial modified Rankin scale according to treatment 
group; subgroups are divided into hyperacute (<9 hours), acute (9 hours to <7 days) subacute  
(7 to 30 days) and chronic (>30 days) phases of stroke. 
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produced significant improvements in functional and cognitive outcomes when compared to both control and 
administration in the acute phase (days 1–10)31. Similarly, G-CSF and SCF combined induced significant and 
sustained functional recovery in stroke rats with administration as late as 3.5 months post ictus32. More recently, 
however, experimental studies assessed G-CSF in post-stroke aged rats in combination with bone marrow-derived 
mononuclear cells33 and pre-differentiated mesenchymal cells34; 28 days of combined treatment did not enhance 
recovery in comparison to G-CSF alone in either experiment, further questioning the capability of the aged brain 
to respond to regenerative therapies.

An area of concern in human clinical studies is the potential risk of G-CSF to induce thrombotic events sec-
ondary to an inevitable leucocytosis, and therefore risk of exacerbating recurrent ischaemic stroke or inducing 
vascular events. Leucocytosis increases with repeated daily dosing and subsequently returns to normal within 
5 days of the final dose10,17. Thrombotic complications would therefore be more likely to occur over the first 
5–20 days after randomisation; our data depicts no differences in vascular event rates during this initial time 
period and no difference overall between groups until end-of-trial follow-up. A second area of safety concern 
is with increased risk of intracerebral haemorrhage as seen in other trials of colony stimulating factors (eryth-
ropoietin)35, though there is conflicting preclinical literature as to whether G-CSF attenuates or potentiates risk 
of haemorrhage when used in conjunction with thrombolysis36,37. There were no haemorrhagic events in the 
treatment group of this patient safety set, and none reported in AXIS-2 where two thirds of the cohort was 
thrombolysed18.

Our study has a number of limitations to consider. First, one company that ran three studies failed to respond 
to repeated requests to share data with the collaboration16,18,24. In particular, absence of the largest dataset (AXIS-2)  
could have confounded our analyses. We have attempted to overcome this by including their summary data in 
the subgroup analyses (Fig. 1). One of these study assessing G-CSF in the chronic phase (n =  41) is also absent16. 
There are published concerns about this study: motor function assessments were initially conducted 3 to 7 days 
after treatment had started (i.e. no pre-treatment values) and participants had almost completely recovered from 
their initial stroke deficits. Second, our overall sample size is relatively small meaning any findings could be due 
to chance. Third, the heterogeneity in trial design, such as route and dose of G-CSF and study quality21 could have 
lead to either over- or under- estimates of treatment efficacy and safety.

In summary, G-CSF did not improve stroke outcome in this individual patient data meta-analysis. There 
are insufficient data on G-CSF administration in the subacute and chronic phases of stroke and further clinical 
trials should be considered. It seems sensible to adopt an administration time when the acute and potentially 
toxic inflammatory reaction has started to settle, and treat when the microenvironment favours a remodelling 
and neuroreparative phase. We suggest a period up to 4 weeks post stroke when most patients are still receiving 
active stimulus with a rehabilitation programme, perhaps further enhancing neuroregeneration19. A trend to an 
increase in serious adverse events in the G-CSF group highlights the importance of continued safety surveillance 
in future studies.

Methods
Identification of relevant trials. Randomised controlled trials of G-CSF and stroke were sought 
using electronic searches (Cochrane Library, Medline, Embase, PubMed) up to May 2016, and in a Cochrane 
Collaboration review of colony stimulating factors and stroke21. Key search terms included granulocyte-colony 
stimulating factor, G-CSF, ischaemic and haemorrhagic stroke, and randomised controlled trial (exploding the 
search terms). PRISMA guidelines for reporting have been followed.

Target trials. Randomised controlled trials of G-CSF given in the hyperacute (< 9 hours), acute (9 hours to < 7 days),  
subacute (7 to 30 days), and chronic (> 30 days) phases of stroke, and involving participants with ischaemic stroke 
and/or spontaneous intracerebral haemorrhage.

Data acquisition. Investigators and authors were approached to share individual patient data from their 
respective trials including: patient demographics-age, sex; risk factors-hypertension, atrial fibrillation, diabetes, 
ischaemic heart disease, previous stroke; stroke details-date and time, subtype, severity (National Institutes of 
Health Stroke Scale, NIHSS); trial design-blinding; treatment-start date, length of treatment, treatment received, 
length of follow up; and outcomes and their date-functional (modified Rankin Scale [mRS], Barthel Index [BI]), 
impairment (NIHSS), quality of life (Euro-Qol-5D, as health utility status [HUS]), haematology (leucocyte 
count), vascular events (ischaemic stroke, haemorrhagic stroke, myocardial infarction, systemic embolus, venous 
thrombo-embolism), and serious adverse events.

Outcome measures. The number of participants with a serious adverse event, arterial and venous vascular 
events, and death were key components of safety. Functional outcome was assessed by the mRS at final follow-up. 
Other outcomes included NIHSS, BI, number of people with an infection and health utility index.

Data analysis. Following receipt of individual patient data from corresponding chief investigators, the infor-
mation was tabulated, checked for errors and compared to the primary publication of respective trials. Individual 
patient data were merged to form a common data set. One trial collected information on stroke severity using 
the Scandinavian Stroke Scale10; these data were converted to the equivalent NIHSS score using a published for-
mula38. Univariate and multiple variable analyses were performed, with the latter adjusted for age, sex, severity 
(NIHSS) and time to treatment. The effects of time-to-treatment were analysed in an ordinal logistic regression 
model, with mRS set as the outcome variable (ordinal shift analysis), and age, sex, NIHSS, time-to-treatment and 
treatment-time interaction (trt*time) as the predictor variables. Safety and efficacy were assessed in pre-specified 
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sub groups: stroke subtype and time to administration. Statistical significance was taken at p <  0.05. No data 
was imputed for missing values; patients who had died were assigned scores of − 1 for BI, 6 for mRS, and 43 for 
NIHSS.

References
1. Murray, C. J. & Lopez, A. D. Mortality by cause for eight regions of the world: Global Burden of Disease Study. Lancet 349, 

1269–1276 (1997).
2. Dunac, A. et al. Neurological and functional recovery in human stroke are associated with peripheral blood CD34+  cell 

mobilization. J Neurol 254, 327–332 (2007).
3. Hennemann, B. et al. Mobilization of CD34+  hematopoietic cells, colony-forming cells and long-term culture-initiating cells into 

the peripheral blood of patients with an acute cerebral ischemic insult. Cytotherapy 10, 303–311 (2008).
4. Schabitz, W. R. et al. Neuroprotective effect of granulocyte colony-stimulating factor after focal cerebral ischemia. Stroke 34, 

745–751 (2003).
5. Kollmar, R., Henninger, N., Urbanek, C. & Schwab, S. G-CSF and rt-PA for the treatment of experimental embolic stroke. 

Cerebrovascular Diseases 23, 23 (2007).
6. Gibson, C. L., Bath, P. M. & Murphy, S. P. G-CSF reduces infarct volume and improves functional outcome after transient focal 

cerebral ischemia in mice. Journal of Cerebral Blood Flow & Metabolism 25, 431–439 (2005).
7. Schneider, A. et al. The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives 

neurogenesis. Journal of Clinical Investigation 115, 2083–2098 (2005).
8. Sehara, Y. et al. Potentiation of neurogenesis and angiogenesis by G-CSF after focal cerebral ischemia in rats. Brain Research 1151, 

142–149 (2007).
9. England, T. J., Gibson, C. L. & Bath, P. M. Granulocyte-colony stimulating factor in experimental stroke and its effects on infarct size 

and functional outcome: A systematic review. Brain Res Rev 62(1), 71–82 (2009).
10. Sprigg, N. et al. Granulocyte-colony-stimulating factor mobilizes bone marrow stem cells in patients with subacute ischemic stroke: 

the Stem cell Trial of recovery EnhanceMent after Stroke (STEMS) pilot randomized, controlled trial (ISRCTN 16784092). Stroke 
37, 2979–2983 (2006).

11. Shyu, W. C., Lin, S. Z., Lee, C. C., Liu, D. D. & Li, H. Granulocyte colony-stimulating factor for acute ischemic stroke: a randomized 
controlled trial. CMAJ Canadian Medical Association Journal 174, 927–933 (2006).

12. Zhang, J. J. et al. A Short-Term Assessment of Recombinant Granulocyte-Stimulating factor (RHG-CSF) in Treatment of Acute 
Cerebral Infarction. Cerebrovascular Diseases 21, 143 (2006).

13. AXIS study collaborative, g. et al. Ax 200 (G-CSF) for the treatment of ischemic stroke. Stroke 39, 561 (2008).
14. Alasheev, A. M., Belkin, A. A., Liderman, L. N., Ivanov, R. A. & Isakova, T. M. Granulocyte-colony stimulating factor for acute 

ischemic stroke: a randomized controlled trial (STEMTHER). Translational Stroke Research 2, 358–365 (2011).
15. Prasad, K. et al. Mobilization of Stem Cells Using G-CSF for Acute Ischemic Stroke: A Randomized Controlled, Pilot Study. Stroke 

Res Treat 2011, 283473, doi: 10.4061/2011/283473 (2011).
16. Floel, A. et al. Granulocyte-Colony Stimulating Factor (G-CSF) in Stroke Patients with Concomitant Vascular Disease-A 

Randomized Controlled Trial. PLoS One 6, e19767, doi: 10.1371/journal.pone.0019767 (2011).
17. England, T. J. et al. Stem-cell trial of recovery enhancement after stroke 2 (STEMS2). Randomised placebo-controlled trial of 

granulocyte-colony stimulating factor in mobilising bone marrow stem cells in sub-acute stroke. Stroke 43, 405–411 (2012).
18. Ringelstein, E. B. et al. Granulocyte colony-stimulating factor in patients with acute ischemic stroke: results of the AX200 for 

Ischemic Stroke trial. Stroke 44, 2681–2687, doi: 10.1161/strokeaha.113.001531 (2013).
19. Sprigg, N. et al. Granulocyte Colony Stimulating Factor and Physiotherapy after Stroke: Results of a Feasibility Randomised 

Controlled Trial: Stem Cell Trial of Recovery EnhanceMent after Stroke-3 (STEMS-3 ISRCTN16714730). PLoS One 11, e0161359, 
doi: 10.1371/journal.pone.0161359 (2016).

20. Allen, R. et al. Stem cell Trial of recovery Enhancement after Stroke 3 (STEMS3). International Journal of Stroke 8, 3 (2013).
21. Bath, P. M., Sprigg, N. & England, T. Colony stimulating factors (including erythropoietin, granulocyte colony stimulating factor 

and analogues) for stroke. Cochrane Database Syst Rev 6, CD005207, doi: 10.1002/14651858.CD005207.pub4 (2013).
22. Fan, Z. Z. et al. The Efficacy and Safety of Granulocyte Colony-Stimulating Factor for Patients with Stroke. J Stroke Cerebrovasc Dis, 

doi: 10.1016/j.jstrokecerebrovasdis.2014.11.033 (2015).
23. Bamford, J., Sandercock, P., Dennis, M., Burn, J. & Warlow, C. Classification and natural history of clinically identifiable subtypes of 

cerebral infarction. Lancet 337, 1521–1526 (1991).
24. Schabitz, W. R. et al. AXIS: A Trial of Intravenous Granulocyte Colony-Stimulating Factor in Acute Ischemic Stroke. Stroke 41, 

2545–2551 (2010).
25. Popa-Wagner, A. et al. Effects of granulocyte-colony stimulating factor after stroke in aged rats. Stroke 41, 1027–1031 (2010).
26. Lan, X., Qu, H., Yao, W. & Zhang, C. Granulocyte-colony stimulating factor inhibits neuronal apoptosis in a rat model of diabetic 

cerebral ischemia. Tohoku Journal of Experimental Medicine 216, 117–126 (2008).
27. Zhao, L. R., Singhal, S., Duan, W. M., Mehta, J. & Kessler, J. A. Brain repair by hematopoietic growth factors in a rat model of stroke. 

Stroke 38, 2584–2591 (2007).
28. Buga, A. M., Di Napoli, M. & Popa-Wagner, A. Preclinical models of stroke in aged animals with or without comorbidities: role of 

neuroinflammation. Biogerontology 14, 651–662, doi: 10.1007/s10522-013-9465-0 (2013).
29. Buga, A. M. et al. The genomic response of the ipsilateral and contralateral cortex to stroke in aged rats. J Cell Mol Med 12, 

2731–2753, doi: 10.1111/j.1582-4934.2008.00252.x (2008).
30. Sehara, Y. et al. G-CSF enhances stem cell proliferation in rat hippocampus after transient middle cerebral artery occlusion. 

Neuroscience Letters 418, 248–252 (2007).
31. Kawada, H. et al. Administration of hematopoietic cytokines in the subacute phase after cerebral infarction is effective for functional 

recovery facilitating proliferation of intrinsic neural stem/progenitor cells and transition of bone marrow-derived neuronal cells. 
Circulation 113, 701–710 (2006).

32. Zhao, L. R. et al. Beneficial effects of hematopoietic growth factor therapy in chronic ischemic stroke in rats. Stroke 38, 2804–2811 
(2007).

33. Buga, A. M. et al. Granulocyte colony-stimulating factor and bone marrow mononuclear cells for stroke treatment in the aged brain. 
Curr Neurovasc Res 12, 155–162 (2015).

34. Balseanu, A. T. et al. Multimodal Approaches for Regenerative Stroke Therapies: Combination of Granulocyte Colony-Stimulating 
Factor with Bone Marrow Mesenchymal Stem Cells is Not Superior to G-CSF Alone. Frontiers in aging neuroscience 6, 130, doi: 
10.3389/fnagi.2014.00130 (2014).

35. Ehrenreich, H. et al. Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 40, e647–e656, doi: 
10.1161/STROKEAHA.109.564872 (2009).

36. dela Pena, I. C. et al. Granulocyte colony-stimulating factor attenuates delayed tPA-induced hemorrhagic transformation in 
ischemic stroke rats by enhancing angiogenesis and vasculogenesis. J Cereb Blood Flow Metab 35, 338–346, doi: 10.1038/
jcbfm.2014.208 (2015).



www.nature.com/scientificreports/

7Scientific RepoRts | 6:36567 | DOI: 10.1038/srep36567

37. Gautier, S. et al. Impact of the neutrophil response to granulocyte colony-stimulating factor on the risk of hemorrhage when used in 
combination with tissue plasminogen activator during the acute phase of experimental stroke. Journal of neuroinflammation 11, 96, 
doi: 10.1186/1742-2094-11-96 (2014).

38. Gray, L. J., Ali, M., Lyden, P. D. & Bath, P. M. Interconversion of the National Institutes of Health Stroke Scale and Scandinavian 
Stroke Scale in acute stroke. J Stroke Cerebrovasc Dis 18, 466–468 (2009).

Acknowledgements
P.B. was the Chief Investigator for the Stem Cell Trial of Recovery EnhanceMent After Stroke (STEMS-1, 
funded by the Stroke Association) and STEMS-2 (funded by the Medical Research Council). He is the Stroke 
Association Professor of Stroke Medicine. NS was the Chief investigator for STEMS-3 funded by National 
Institute for Health Research-Research for Patient Benefit. There were no external sources of funding for this 
work.

Author Contributions
T.E. and P.B. designed the study; T.E. wrote the main manuscript and prepared the figure and tables; N.S., P.B., 
A.A., A.B., A.K. and K.P. reviewed and commented on the manuscript.
Additional Information
Competing financial interests: The authors declare no competing financial interests.
How to cite this article: England, T. J. et al. Granulocyte-Colony Stimulating Factor (G-CSF) for stroke: an 
individual patient data meta-analysis. Sci. Rep. 6, 36567; doi: 10.1038/srep36567 (2016).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2016

http://creativecommons.org/licenses/by/4.0/

	Granulocyte-Colony Stimulating Factor (G-CSF) for stroke: an individual patient data meta-analysis
	Results
	Discussion
	Methods
	Identification of relevant trials. 
	Target trials. 
	Data acquisition. 
	Outcome measures. 
	Data analysis. 

	Acknowledgements
	Author Contributions
	Figure 1.  The effect of time of administration on end-of-trial modified Rankin scale according to treatment group subgroups are divided into hyperacute (<9 hours), acute (9 hours to <7 days) subacute (7 to 30 days) and chronic (>30 days) phases of 
	Table 1.   Trial design of identified randomised controlled trials of G-CSF and stroke.
	Table 2.   Baseline characteristics.
	Table 3.   The effect of G-CSF compared to placebo on secondary outcome measures.



 
    
       
          application/pdf
          
             
                Granulocyte-Colony Stimulating Factor (G-CSF) for stroke: an individual patient data meta-analysis
            
         
          
             
                srep ,  (2016). doi:10.1038/srep36567
            
         
          
             
                Timothy J. England
                Nikola Sprigg
                Andrey M. Alasheev
                Andrey A. Belkin
                Amit Kumar
                Kameshwar Prasad
                Philip M. Bath
            
         
          doi:10.1038/srep36567
          
             
                Nature Publishing Group
            
         
          
             
                © 2016 Nature Publishing Group
            
         
      
       
          
      
       
          © 2016 The Author(s)
          10.1038/srep36567
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep36567
            
         
      
       
          
          
          
             
                doi:10.1038/srep36567
            
         
          
             
                srep ,  (2016). doi:10.1038/srep36567
            
         
          
          
      
       
       
          True
      
   




