19 research outputs found

    Assessment of variability in continental low stratiform clouds based on observations of radar reflectivity

    Get PDF
    This is the publisher's version, also available electronically from http://onlinelibrary.wiley.com/doi/10.1029/2005JD006158/abstract.The variability of overcast low stratiform clouds observed over the ARM Climate Research Facility Southern Great Plains (ACRF SGP) site is analyzed, and an approach to characterizing subgrid variability based on assumed statistical distributions is evaluated. The analysis is based on a vast (>1000 hours) radar reflectivity database collected by the Millimeter-Wave Cloud Radar at ACRF SGP site. The radar data are classified into two low cloud categories and stratified by scale and the presence of precipitation. Cloud variability is analyzed by studying statistical distributions for the first two moments of the probability distribution functions (PDF) of radar reflectivity. Results indicate that variability for a broadly defined low-altitude stratiform cloud type exhibits on average 40% greater standard deviation than canonical boundary layer clouds topped by an inversion. Cloud variability also dramatically depends on microphysical processes (as manifested in radar reflectivity) and increases by 2–5 times within a typical reflectivity range. Finally, variability is a strong function of scale and almost doubles in the 20–100 min temporal scale range. Formulations of subgrid variability, based on PDFs of reflectivity, are evaluated for the two cloud types and two scales of 10 and 30 km, taken to be representative of mesoscale and NWP model grid sizes. The results show that for these cloud types and scales the PDF of reflectivity can be reasonably well approximated by a truncated Gaussian function, specified by mean and standard deviation with the latter parameterized as a linear function of the mean

    Fidelity of Analytic Drop Size Distributions in Drizzling Stratiform Clouds Based on Large-Eddy Simulations

    Get PDF
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/2009JAS3028.1.Cloud microphysical parameterizations and retrievals rely heavily on knowledge of the shape of drop size distributions (DSDs). Many investigations assume that DSDs in the entire or partial drop size range may be approximated by known analytical functions. The most frequently employed approximations of function are of the type of gamma, lognormal, Khrgian–Mazin, and Marshall–Palmer. At present, little is known about the accuracy of these approximations. The authors employ a DSD dataset generated by the Cooperative Institute for Mesoscale Meteorological Studies Large-Eddy Simulation (CIMMS LES) explicit microphysics model for stratocumulus cases observed during the Atlantic Stratocumulus Transition Experiment (ASTEX) field project. The fidelity of analytic lognormal- and gamma-type DSD functions is evaluated according to how well they represent the higher-order moments of the drop spectra, such as precipitation flux and radar reflectivity. It is concluded that for boundary layer marine drizzling stratocumuli, a DSD based on the two-mode gamma distribution provides a more accurate estimate of precipitation flux and radar reflectivity than the DSD based on the lognormal distribution. The gamma distribution also provides a more accurate radar reflectivity field in two- and three-moment bulk microphysical models compared to the conventional Z–R relationship

    A Bulk Parameterization of Giant CCN

    Get PDF
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/2007JAS2502.1.A parameterization for giant cloud condensation nuclei (GCCN), suitable for use in bulk microphysical models, has been developed that uses precise representations of the condensational growth of aerosol particles in the subcloud layer. The formulation employs an observationally based GCCN distribution function and directly observable parameters of GCCN, such as concentration and the shape of the aerosol spectra. The parameterization couples naturally to parameterizations of sea salt flux from the ocean surface. The behavior of the GCCN parameterization in a large eddy simulation (LES) framework is consistent with simulations employing explicit, size-resolving microphysical methods. The parameterization properly represents the sensitivity of cloud, drizzle, turbulence, and radiative properties to changes in GCCN concentration for polluted and clean background CCN environments

    Effects of Sea-Salt Aerosols on Precipitation in Simulations of Shallow Cumulus

    Get PDF
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-11-031.1.A suite of large-eddy simulations with size-resolving microphysical processes was performed in order to assess effects of sea-salt aerosols on precipitation process in trade cumulus. Simulations based on observations from the Rain in Cumulus over the Ocean (RICO) field campaign explored the effects of adding sea-salt nuclei in different size ranges by following the evolution of 369 cloud cells over the 24-h simulation period. The addition of large (small) sea-salt nuclei tends to accelerate (suppress) precipitation formation; however, in marine environments the sea-salt spectra always include a combination of both small (film) and large (jet) nuclei. When realistic sea-salt spectra are specified as a function of surface wind, the effect of the larger nuclei to enhance the precipitation predominates, and accumulated precipitation increases with wind speed. This effect, however, is strongly influenced by the choice of background CCN spectrum. Adding the same sea-salt specification to an environment with a higher background aerosol load results in a decrease in accumulated precipitation with increasing surface wind speed. Results also suggest that the slope of the relationship between vertical velocity W and the concentration of embryonic precipitation particles at cloud base Nr may indicate the role of sea-salt nuclei. A negative slope (Nr decreasing with increasing W) points to the predominance of small sea-salt nuclei, in which larger updrafts activate a greater number of smaller cloud drops with smaller coalescence efficiencies, resulting in fewer embryonic rain drops. A positive slope, on the other hand, indicates the presence of large sea-salt nuclei, which are the source of embryonic rain drops

    Large-eddy observation of post-cold-frontal continental stratocumulus

    Get PDF
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/2010JAS3389.1.More studies on the dynamics of marine stratus and stratocumulus clouds have been performed than comparable studies on continental stratocumulus. Therefore, to increase the number of observations of continental stratocumulus and to compare marine and continental stratocumulus to each other, the approach of large-eddy observation (LEO) was applied to a case of nocturnal continental stratocumulus observed over the Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) in the central United States on 8 April 2006. The stratocumulus occurred in cold-air and dry-air advection behind a surface cold front. LEOs were obtained from millimeter-wavelength cloud radar and micropulse lidar, whereas traditional meteorological observations described the synoptic environment. This study focuses on a 9-h period of a predominantly nonprecipitating stratocumulus layer 250–400 m thick. A slight thinning of the cloud layer over time is consistent with dry-air advection. A deep layer of descent overlaid a shallower layer of ascent from the surface up to 800 mb, providing a mechanism for strengthening the inversion at cloud top. Time series of Doppler velocity indicate vertically coherent structures identifiable throughout much of the cloud layer. The magnitude of turbulence, as indicated by the variance of the vertical velocity, was weak relative to typical marine stratocumulus and to the one other case of continental stratocumulus in the literature. Conditional sampling of the eddy structures indicate that strong downdrafts were more prevalent than strong updrafts, and negative skewness of vertical velocity in the cloud implies an in-cloud circulation driven by longwave cooling at cloud top, similar to that in marine stratocumulus

    Large-Eddy Simulation of Post-Cold-Frontal Continental Stratocumulus

    Get PDF
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/2010JAS3467.1.Previous large-eddy simulations (LES) of stratocumulus-topped boundary layers have been exclusively set in marine environments. Boundary layer stratocumulus clouds are also prevalent over the continent but have not been simulated previously. A suite of LES runs was performed for a case of continental post-cold-frontal stratocumulus observed by the Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF), located in northern Oklahoma. Comparison with fixed, ground-based sensors necessitated an Eulerian approach in which it was necessary to supply to the model estimates of synoptic-scale advection and vertical motion, particularly given the quickly evolving, baroclinic nature of the synoptic environment. Initial analyses from the Rapid Update Cycle model supplied estimates for these forcing terms. Turbulent statistics calculated from the LES results are consistent with large-eddy observations obtained from millimeter-wave cloud radar. The magnitude of turbulence is weaker than in typical marine stratocumulus, a result attributed to highly decoupled cloud and subcloud circulations associated with a deep layer of negative buoyancy flux arising from the entrainment of warm, free-tropospheric air. Model results are highly sensitive to variations in advection of temperature and moisture and much less sensitive to changes in synoptic-scale vertical velocity and surface fluxes. For this case, moisture and temperature advection, rather than entrainment, tend to be the governing factors in the analyzed cloud system maintenance and decay. Typical boundary layer entrainment scalings applied to this case do not perform very well, a result attributed to the highly decoupled nature of the circulation. Shear production is an important part of the turbulent kinetic energy budget. The dominance of advection provides an optimistic outlook for mesoscale, numerical weather prediction, and climate models because these classes of models represent these grid-scale processes better than they do subgrid-scale processes such as entrainment

    Large-Eddy Observation of Post-Cold-Frontal Continental Stratocumulus

    Get PDF
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/2010JAS3389.1.More studies on the dynamics of marine stratus and stratocumulus clouds have been performed than comparable studies on continental stratocumulus. Therefore, to increase the number of observations of continental stratocumulus and to compare marine and continental stratocumulus to each other, the approach of large-eddy observation (LEO) was applied to a case of nocturnal continental stratocumulus observed over the Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) in the central United States on 8 April 2006. The stratocumulus occurred in cold-air and dry-air advection behind a surface cold front. LEOs were obtained from millimeter-wavelength cloud radar and micropulse lidar, whereas traditional meteorological observations described the synoptic environment. This study focuses on a 9-h period of a predominantly nonprecipitating stratocumulus layer 250–400 m thick. A slight thinning of the cloud layer over time is consistent with dry-air advection. A deep layer of descent overlaid a shallower layer of ascent from the surface up to 800 mb, providing a mechanism for strengthening the inversion at cloud top. Time series of Doppler velocity indicate vertically coherent structures identifiable throughout much of the cloud layer. The magnitude of turbulence, as indicated by the variance of the vertical velocity, was weak relative to typical marine stratocumulus and to the one other case of continental stratocumulus in the literature. Conditional sampling of the eddy structures indicate that strong downdrafts were more prevalent than strong updrafts, and negative skewness of vertical velocity in the cloud implies an in-cloud circulation driven by longwave cooling at cloud top, similar to that in marine stratocumulus

    Large-Eddy simulation of post-cold-frontal continental stratocumulus

    Get PDF
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/2010JAS3467.1.Previous large-eddy simulations (LES) of stratocumulus-topped boundary layers have been exclusively set in marine environments. Boundary layer stratocumulus clouds are also prevalent over the continent but have not been simulated previously. A suite of LES runs was performed for a case of continental post-cold-frontal stratocumulus observed by the Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF), located in northern Oklahoma. Comparison with fixed, ground-based sensors necessitated an Eulerian approach in which it was necessary to supply to the model estimates of synoptic-scale advection and vertical motion, particularly given the quickly evolving, baroclinic nature of the synoptic environment. Initial analyses from the Rapid Update Cycle model supplied estimates for these forcing terms. Turbulent statistics calculated from the LES results are consistent with large-eddy observations obtained from millimeter-wave cloud radar. The magnitude of turbulence is weaker than in typical marine stratocumulus, a result attributed to highly decoupled cloud and subcloud circulations associated with a deep layer of negative buoyancy flux arising from the entrainment of warm, free-tropospheric air. Model results are highly sensitive to variations in advection of temperature and moisture and much less sensitive to changes in synoptic-scale vertical velocity and surface fluxes. For this case, moisture and temperature advection, rather than entrainment, tend to be the governing factors in the analyzed cloud system maintenance and decay. Typical boundary layer entrainment scalings applied to this case do not perform very well, a result attributed to the highly decoupled nature of the circulation. Shear production is an important part of the turbulent kinetic energy budget. The dominance of advection provides an optimistic outlook for mesoscale, numerical weather prediction, and climate models because these classes of models represent these grid-scale processes better than they do subgrid-scale processes such as entrainment

    Multidimensional Longwave Forcing of Boundary Layer Cloud Systems

    Get PDF
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/2008JAS2733.1.The importance of multidimensional (MD) longwave radiative effects on cloud dynamics is evaluated in an eddy-resolving model (ERM)—the two-dimensional analog to large-eddy simulation (LES)—framework employing multidimensional radiative transfer [Spherical Harmonics Discrete Ordinate Method (SHDOM)]. Simulations are performed for a case of unbroken, marine boundary layer stratocumulus and a broken field of trade cumulus. “Snapshot” calculations of MD and independent pixel approximation (IPA; 1D) radiative transfer applied to simulated cloud fields show that the total radiative forcing changes only slightly, although the MD effects significantly modify the spatial structure of the radiative forcing. Simulations of each cloud type employing MD and IPA radiative transfer, however, differ little. For the solid cloud case, relative to using IPA, the MD simulation exhibits a slight reduction in entrainment rate and boundary layer total kinetic energy (TKE) relative to the IPA simulation. This reduction is consistent with both the slight decrease in net radiative forcing and a negative correlation between local vertical velocity and radiative forcing, which implies a damping of boundary layer eddies. Snapshot calculations of the broken cloud case suggest a slight increase in radiative cooling, although few systematic differences are noted in the interactive simulations. This result is attributed to the fact that radiative cooling is a relatively minor contribution to the total energetics. For the cloud systems in this study, the use of IPA longwave radiative transfer is sufficiently accurate to capture the dynamical behavior of boundary layer clouds. Further investigations are required to generalize this conclusion for other cloud types and longer time integrations

    Prospects of the WSR-88D Radar for Cloud Studies

    Get PDF
    This is the publisher's version, also available electronically from http://journals.ametsoc.org/doi/abs/10.1175/2010JAMC2303.1.Sounding of nonprecipitating clouds with the 10-cm wavelength Weather Surveillance Radar-1988 Doppler (WSR-88D) is discussed. Readily available enhancements to signal processing and volume coverage patterns of the WSR-88D allow observations of a variety of clouds with reflectivities as low as −25 dBZ (at a range of 10 km). The high sensitivity of the WSR-88D, its wide velocity and unambiguous range intervals, and the absence of attenuation allow accurate measurements of the reflectivity factor, Doppler velocity, and spectrum width fields in clouds to ranges of about 50 km. Fields of polarimetric variables in clouds, observed with a research polarimetric WSR-88D, demonstrate an abundance of information and help to resolve Bragg and particulate scatter. The scanning, Doppler, and polarimetric capabilities of the WSR-88D allow real-time, three-dimensional mapping of cloud processes, such as transformations of hydrometeors between liquid and ice phases. The presence of ice particles is revealed by high differential reflectivities and the lack of correlation between reflectivity and differential reflectivity in clouds in contrast to that found for rain. Pockets of high differential reflectivities are frequently observed in clouds; maximal values of differential reflectivity exceed 8 dB, far above the level observed in rain. The establishment of the WSR-88D network consisting of 157 polarimetric radars can be used to collect cloud data at any radar site, making the network a potentially powerful tool for climatic studies
    corecore