13 research outputs found

    Monitoring Wind-Borne Particle Matter Entering Poultry Farms via the Air-Inlet: Highly Pathogenic Avian Influenza Virus and Other Pathogens Risk

    Get PDF
    Wind-supported transport of particle matter (PM) contaminated with excreta from highly pathogenic avian influenza virus (HPAIv)-infected wild birds may be a HPAIv-introduction pathway, which may explain infections in indoor-housed poultry. The primary objective of our study was therefore to measure the nature and quantity of PM entering poultry houses via air-inlets. The air-inlets of two recently HPAIv-infected poultry farms (a broiler farm and a layer farm) were equipped with mosquito-net collection bags. PM was harvested every 5 days for 25 days. Video-camera monitoring registered wild bird visits. PM was tested for avian influenza viruses (AIV), Campylobacter and Salmonella with PCR. Insects, predominantly mosquitoes, were tested for AIV, West Nile, Usutu and Schmallenberg virus. A considerable number of mosquitoes and small PM amounts entered the air-inlets, mostly cobweb and plant material, but no wild bird feathers. Substantial variation in PM entering between air-inlets existed. In stormy periods, significantly larger PM amounts may enter wind-directed air-inlets. PM samples were AIV and Salmonella negative and insect samples were negative for all viruses and bacteria, but several broiler and layer farm PM samples tested Campylobacter positive. Regular wild (water) bird visits were observed near to the poultry houses. Air-borne PM and insects-potentially contaminated with HPAIv or other pathogens-can enter poultry air-inlets. Implementation of measures limiting this potential introduction route are recommended

    Combining a parsimonious mathematical model with infection data from tailor-made experiments to understand environmental transmission

    No full text
    Abstract Although most infections are transmitted through the environment, the processes underlying the environmental stage of transmission are still poorly understood for most systems. Improved understanding of the environmental transmission dynamics is important for effective non-pharmaceutical intervention strategies. To study the mechanisms underlying environmental transmission we formulated a parsimonious modelling framework including hypothesised mechanisms of pathogen dispersion and decay. To calibrate and validate the model, we conducted a series of experiments studying distance-dependent transmission of Campylobacter jejuni in broilers. We obtained informative simultaneous estimates for all three model parameters: the parameter of C. jejuni inactivation, the diffusion coefficient describing pathogen dispersion, and the transmission rate parameter. The time and distance dependence of transmission in the fitted model is quantitatively consistent with marked spatiotemporal patterns in the experimental observations. These results, for C. jejuni in broilers, show that the application of our modelling framework to suitable transmission data can provide mechanistic insight in environmental pathogen transmission

    Tularemia Transmission to Humans, the Netherlands, 2011-2021

    Get PDF
    We used national registry data on human cases of Francisella tularensis subspecies holarctica infection to assess transmission modes among all 26 autochthonous cases in the Netherlands since 2011. The results indicate predominance of terrestrial over aquatic animal transmission sources. We recommend targeting disease-risk communication toward hunters, recreationists, and outdoor professionals

    Complete genome for Actinobacillus pleuropneumoniae serovar 8 reference strain 405 : comparative analysis with draft genomes for different laboratory stock cultures indicates little genetic variation

    Get PDF
    This work was supported by a Longer and Larger (LoLa) grant from the Biotechnology and Biological Sciences Research Council (grant numbers BB/G020744/1, BB/G019177/1, BB/G019274/1, BB/G018553/1, BB/S002103/1, and BB/S005897/1), the UK Department for Environment, Food and Rural Affairs, and Zoetis (formerly Pfizer Animal Health) awarded to the Bacterial Respiratory Diseases of Pigs-1 Technology (BRaDP1T) consortium. Funding for LL provided by the ‘National Natural Science Foundation of China’ (No.31520103917). MTGH and DH were supported by the Wellcome Trust (grant number 098051).We report here the complete genome sequence of the widely studied Actinobacillus pleuropneumoniae serovar 8 reference strain 405, generated using the Pacific Biosciences (PacBio) RS II platform. Furthermore, we compared draft sequences generated by Illumina sequencing of six stocks of this strain, including the same original stock used to generate the PacBio sequence, held in different countries and found little genetic variation, with only three SNPs identified, all within the degS gene. However, sequences of two small plasmids, pARD3079 and p405tetH, detected by Illumina sequencing of the draft genomes were not identified in the PacBio sequence of the reference strain.Publisher PDFPeer reviewe

    Tularemia Transmission to Humans, the Netherlands, 2011-2021

    No full text
    We used national registry data on human cases of Francisella tularensis subspecies holarctica infection to assess transmission modes among all 26 autochthonous cases in the Netherlands since 2011. The results indicate predominance of terrestrial over aquatic animal transmission sources. We recommend targeting disease-risk communication toward hunters, recreationists, and outdoor professionals

    Monitoring Wind-Borne Particle Matter Entering Poultry Farms via the Air-Inlet: Highly Pathogenic Avian Influenza Virus and Other Pathogens Risk

    Get PDF
    Wind-supported transport of particle matter (PM) contaminated with excreta from highly pathogenic avian influenza virus (HPAIv)-infected wild birds may be a HPAIv-introduction pathway, which may explain infections in indoor-housed poultry. The primary objective of our study was therefore to measure the nature and quantity of PM entering poultry houses via air-inlets. The air-inlets of two recently HPAIv-infected poultry farms (a broiler farm and a layer farm) were equipped with mosquito-net collection bags. PM was harvested every 5 days for 25 days. Video-camera monitoring registered wild bird visits. PM was tested for avian influenza viruses (AIV), Campylobacter and Salmonella with PCR. Insects, predominantly mosquitoes, were tested for AIV, West Nile, Usutu and Schmallenberg virus. A considerable number of mosquitoes and small PM amounts entered the air-inlets, mostly cobweb and plant material, but no wild bird feathers. Substantial variation in PM entering between air-inlets existed. In stormy periods, significantly larger PM amounts may enter wind-directed air-inlets. PM samples were AIV and Salmonella negative and insect samples were negative for all viruses and bacteria, but several broiler and layer farm PM samples tested Campylobacter positive. Regular wild (water) bird visits were observed near to the poultry houses. Air-borne PM and insects-potentially contaminated with HPAIv or other pathogens-can enter poultry air-inlets. Implementation of measures limiting this potential introduction route are recommended

    Brucella Pinnipedialis in grey seals (Halichoerus grypus) and harbor seals (Phoca vitulina) in the Netherlands

    Get PDF
    Brucellosis is a zoonotic disease with terrestrial or marine wildlife animals as potential reservoirs for the disease in livestock and human populations. The primary aim of this study was to assess the presence of Brucella pinnipedialis in marine mammals living along the Dutch coast and to observe a possible correlation between the presence of B. pinnipedialis and accompanying pathology found in infected animals. The overall prevalence of Brucella spp. antibodies in sera from healthy wild grey seals ( Halichoerus grypus; n=11) and harbor seals ( Phoca vitulina; n=40), collected between 2007 and 2013 ranged from 25% to 43%. Additionally, tissue samples of harbor seals collected along the Dutch shores between 2009 and 2012, were tested for the presence of Brucella spp. In total, 77% (30/39) seals were found to be positive for Brucella by IS 711 real-time PCR in one or more tissue samples, including pulmonary nematodes. Viable Brucella was cultured from 40% (12/30) real-time PCR-positive seals, and was isolated from liver, lung, pulmonary lymph node, pulmonary nematode, or spleen, but not from any PCR-negative seals. Tissue samples from lung and pulmonary lymph nodes were the main source of viable Brucella bacteria. All isolates were typed as B. pinnipedialis by multiple-locus variable number of tandem repeats analysis-16 clustering and matrix-assisted laser desorption ionization-time of flight mass spectrometry, and of sequence type ST25 by multilocus sequence typing analysis. No correlation was observed between Brucella infection and pathology. This report displays the isolation and identification of B. pinnipedialis in marine mammals in the Dutch part of the Atlantic Ocean

    Brucella Pinnipedialis in grey seals (Halichoerus grypus) and harbor seals (Phoca vitulina) in the Netherlands

    Get PDF
    Brucellosis is a zoonotic disease with terrestrial or marine wildlife animals as potential reservoirs for the disease in livestock and human populations. The primary aim of this study was to assess the presence of Brucella pinnipedialis in marine mammals living along the Dutch coast and to observe a possible correlation between the presence of B. pinnipedialis and accompanying pathology found in infected animals. The overall prevalence of Brucella spp. antibodies in sera from healthy wild grey seals ( Halichoerus grypus; n=11) and harbor seals ( Phoca vitulina; n=40), collected between 2007 and 2013 ranged from 25% to 43%. Additionally, tissue samples of harbor seals collected along the Dutch shores between 2009 and 2012, were tested for the presence of Brucella spp. In total, 77% (30/39) seals were found to be positive for Brucella by IS 711 real-time PCR in one or more tissue samples, including pulmonary nematodes. Viable Brucella was cultured from 40% (12/30) real-time PCR-positive seals, and was isolated from liver, lung, pulmonary lymph node, pulmonary nematode, or spleen, but not from any PCR-negative seals. Tissue samples from lung and pulmonary lymph nodes were the main source of viable Brucella bacteria. All isolates were typed as B. pinnipedialis by multiple-locus variable number of tandem repeats analysis-16 clustering and matrix-assisted laser desorption ionization-time of flight mass spectrometry, and of sequence type ST25 by multilocus sequence typing analysis. No correlation was observed between Brucella infection and pathology. This report displays the isolation and identification of B. pinnipedialis in marine mammals in the Dutch part of the Atlantic Ocean
    corecore