17,028 research outputs found
Study of nonstationary random process theory Final report, 1 Jul. 1966 - 30 Apr. 1967
Nonstationary random processes in nonreal-time applications - theories for nonreal-time correlation and spectrum analysi
Synthesis methods for manual aerospace control systems with applications to SST design
Synthesis methods for manual aerospace control systems using digital programming and man machine performance data with application to supersonic transport desig
Study of Nonstationary Random Process Theory
Nonstationary random process theor
PASCAL/48 reference manual
PASCAL/48 is a programming language for the Intel MCS-48 series of microcomputers. In particular, it can be used with the Intel 8748. It is designed to allow the programmer to control most of the instructions being generated and the allocation of storage. The language can be used instead of ASSEMBLY language in most applications while allowing the user the necessary degree of control over hardware resources. Although it is called PASCAL/48, the language differs in many ways from PASCAL. The program structure and statements of the two languages are similar, but the expression mechanism and data types are different. The PASCAL/48 cross-compiler is written in PASCAL and runs on the CDC CYBER NOS system. It generates object code in Intel hexadecimal format that can be used to program the MCS-48 series of microcomputers. This reference manual defines the language, describes the predeclared procedures, lists error messages, illustrates use, and includes language syntax diagrams
Reverse Current in Solar Flares
The theory that impulsive X ray bursts are produced by high energy electrons streaming from the corona to the chromosphere is investigated. Currents associated with these streams are so high that either the streams do not exist or their current is neutralized by a reverse current. Analysis of a simple model indicates that the primary electron stream leads to the development of an electric field in the ambient corona which decelerates the primary beam and produces a neutralizing reverse current. It appears that, in some circumstances, this electric field could prevent the primary beam from reaching the chromosphere. In any case, the electric field acts as an energy exchange mechanism, extracting kinetic energy from the primary beam and using it to heat the ambient plasma. This heating is typically so rapid that it must be expected to have important dynamical consequences
Computational structural mechanics: A new activity at the NASA Langley Research Center
Complex structures considered for the late 1980's and early 1990's include composite primary aircraft structures and the space station. These structures are much more difficult to analyze than today's structures and necessitate a major upgrade in computerized structural analysis technology. A major research activity in computational structural mechanics (CSM) was initiated. The objective of the CSM activity is develop advanced structural analysis technology that will exploit modern and emerging computers such as computers with vector and/or parallel processing capabilities. The three main research activities underway in CSM include: (1) structural analysis methods development; (2) a software testbed for evaluating the methods; and (3) numerical techniques for parallel processing computers. The motivation and objectives of the CSM activity are presented and CSM activity is described. The current CSM research thrusts, and near and long term CSM research thrusts are outlined
A translator writing system for microcomputer high-level languages and assemblers
In order to implement high level languages whenever possible, a translator writing system of advanced design was developed. It is intended for routine production use by many programmers working on different projects. As well as a fairly conventional parser generator, it includes a system for the rapid generation of table driven code generators. The parser generator was developed from a prototype version. The translator writing system includes various tools for the management of the source text of a compiler under construction. In addition, it supplies various default source code sections so that its output is always compilable and executable. The system thereby encourages iterative enhancement as a development methodology by ensuring an executable program from the earliest stages of a compiler development project. The translator writing system includes PASCAL/48 compiler, three assemblers, and two compilers for a subset of HAL/S
On the engineering of crucial software
The various aspects of the conventional software development cycle are examined. This cycle was the basis of the augmented approach contained in the original grant proposal. This cycle was found inadequate for crucial software development, and the justification for this opinion is presented. Several possible enhancements to the conventional software cycle are discussed. Software fault tolerance, a possible enhancement of major importance, is discussed separately. Formal verification using mathematical proof is considered. Automatic programming is a radical alternative to the conventional cycle and is discussed. Recommendations for a comprehensive approach are presented, and various experiments which could be conducted in AIRLAB are described
Two-fluid model of the solar corona
A simple model of the lower corona which allows for a possible difference in the electron and proton temperatures is analyzed. With the introduction of a phenomenological heating term, temperature and density profiles are calculated for several different cases. It is found that, under certain circumstances, the electron and proton temperatures may differ significantly
Hot entanglement in a simple dynamical model
How mixed can one component of a bi-partite system be initially and still
become entangled through interaction with a thermalized partner? We address
this question here. In particular, we consider the question of how mixed a
two-level system and a field mode may be such that free entanglement arises in
the course of the time evolution according to a Jaynes-Cummings type
interaction. We investigate the situation for which the two-level system is
initially in mixed state taken from a one-parameter set, whereas the field has
been prepared in an arbitrary thermal state. Depending on the particular choice
for the initial state and the initial temperature of the quantised field mode,
three cases can be distinguished: (i) free entanglement will be created
immediately, (ii) free entanglement will be generated, but only at a later time
different from zero, (iii) the partial transpose of the joint state remains
positive at all times. It will be demonstrated that increasing the initial
temperature of the field mode may cause the joint state to become distillable
during the time evolution, in contrast to a non-distillable state at lower
initial temperatures. We further assess the generated entanglement
quantitatively, by evaluating the logarithmic negativity numerically, and by
providing an analytical upper bound.Comment: 5 pages, 2 figures. Contribution to the proceedings of the
'International Conference on Quantum Information', Oviedo, July 13-18, 2002.
Discusses sudden changes of entanglement properties in a dynamical quantum
mode
- …