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ABSTRACT 

This repor t  deals with methods for analyzing nonstationary proces  - 
s e s  in nonreal-t ime (computer -time) applications. In many cases  immediate 

read-out of a nonstationary statist ical  analysis is not required,  and therefore  

m o r e  accura te  off-line analysis may be performed. A theory fo r  non- 

real- t ime correlation analysis and a theory for nonreal-t ime spec t rum 

analysis a r e  presented. 

of stationarity and ergodicity be  made or even approximated. 

theories a r e  based on approximation of the expectation definition of the 

correlat ion function or i t s  Fourier t ransform.  Accordingly, correlat ion 

functions and spec t ra  containing running-time axes may be postulated 

legitimately. 

These theories do not requi re  that the assumptions 

Instead, the 

The theories  make use of t e s t  functions for optimization of the 

analyzer configurations. 

p rocesses  to avoid the need for 

stationary correlat ion function or spec t rum being estimated. 

Tes t  functions a r e  used in the optimization 

precise  a p r io r i  knowledge of the non- -- 

Finally,  an experimental verification of the correlat ion theory is 

presented. 

nonstationary correlat ion function est imates  for data with known correlat ion 

functions, thereby making possible an analysis of estimation e r r o r s .  In 

addition, a nonstationary correlation function est imate  was obtained for 

flexible booster vibration data. 

nonstationary theory.  

Digital programs and plotting routines were  used to obtain 

This analysis shows the feasibility of the 
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I. INTRODUCTION 

Of great  importance in the design of aerospace  equipment i s  the 

problem of statist ically analyzing signals whose sources  of generation have 

t ime-varying pa rame te r s .  

space engineering because of the varying environment through which a 

launch vehicle must  t rave l ,  varying parameters  within the vehicle, o r  

because tes t s  mus t  be  t ransient  in nature .  Moreover ,  communications 

and telemetering sys tems a r e  subject to t ime-varying medium dis turbances,  

the r e su l t  of which is  nonstationary signal reception. 

Nonstationary signals a r e  prevalent in ae ro -  

In addition to aerospace engineering, nonstationary signals a r e  

prevalent in other branches of science and technology. 

r ada r  signals,  speech waveforms, and se i smic  waveforms,  a r e  important 

examples.  Thus,  nonstationary analysis methods developed for aerospace 

application a r e  a l so  widely applicable in other branches of science and 

technology. 

Doppler weather 

Because of the prevalence of nonstationary signals,  it  i s  important 

that  methods be developed for analyzing and understanding them. 

support  of the National Aeronautics and Space Administration: a theory 

rea l - t ime correlation analysis of nonstationary signals was evolved, 

which placed the analysis of nonstationary signals on a firm mathematical  

foundation. 

subsequently implemented on the digital computer.  

Under 

223 

.L 

The real- t ime correlation theory (in a d i scre te  vers ion)  was 

During the past  year  under MSFC contract  NAS8-11346, nonstation- 

a r y  signal analysis was ca r r i ed  further so that maximum advantage could 

be taken of the capabilities of the high-speed digital computer.  The r ea l -  

t ime correlat ion theory was extended to cover the nonreal-t ime or off-line 

(computer-t ime) case .  

continuous, nonreal-t ime sense ,  is fully described in Chapter I1 of this 

r epor t .  

This correlation theory,  which is optimal in a 

::: 
Work on nonstationary signal processing has  been supported by 

NASA under special  t asks  of Contracts NAS8-11346 (Marshal l  Space Flight 
Center )  and NAS1-3485 (Langley Research Center ) .  
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Because of the complexity of the nonreal-t ime nonstationary c o r -  

relation theory,  an experimental  study which ver i f ies  the theory was  

performed,  This  experimental  study involved four aspects :  1) computation 

of numerical  examples of optimal f i l t e rs  for  the correlat ion theory,  2)  de- 

velopment of running digital computer programs and plotting subroutines 

which implement the nonreal-time nonstationary correlat ion theory,  

3 )  experimental  testing of the correlation theory using known t e s t  functions, 

and 4) computation of the nonstationary correlat ion function (and nonstation- 

a r y  spec t rum by  a suitable t ransform) for  flexible booster data furnished 

by  MSFC. 

111 of this repor t .  

The resu l t s  of the experimental  study a r e  descr ibed in Chapter 

While the nonreal-t ime nonstationary correlat ion theory was being 

developed, a paral le l  effort was made under NAS8-11346 to develop a 

theory of direct  spec t rum analysis of nonstationary signals.  

idea was to obtain optimal estimates of nonstationary spec t ra l  densi t ies ,  

ra ther  than t ransform optimal estimates of nonstationary correlat ion 

functions. 

The r eade r  is cautioned that the results of Chapter I V  a r e  prel iminary,  

since l imited scope of effort precluded an experimental  study of the non- 

s ta t ionary spec t ra l  theory.  

Here ,  the 

This  nonstationary spectral  theory is described in Chapter IV. 

Finally, in Chapter V of this repor t  recommendations a r e  made 

for  futher work on the nonstationary theories  and their  application to 

MSFC Computation Laboratory problems. 

2 
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11. NONREAL-TIME (OFF-LINE) CORRELATION ANALYSIS 
O F  NONSTATIONARY SIGNALS 

A. BACKGROUND 

For  many yea r s  engineers and scient is ts  have found it 

advantageous to charac te r ize  randomly fluctuating phenomena by means of 

a single highly descriptive function. 

spec t ra l  density a r e  most  often used, since each contains a grea t  deal of 

information. These functions provide the vital  link between the raw data 

of an experiment on the one hand and the design or redesign of a sys tem on 

the other .  

l eas t  squares  separation of signals f r o m  unwanted noise,  and thus a r e  im- 

portant to communications engineering. 

The correlat ion function and the power 

In addition, they are  the required information for optimal l inear  

Correlation functions and power spec t ra l  densit ies a r e  ra ther  

elusive when being measured .  

the measurement  method itself does not introduce ar t i facts  and large e r r o r s .  

In addition, fundamental and economic limitations on data gathering make i t  

necessa ry  to deal with data records  of finite length and number,  result ing in 

additional sources  of e r r o r .  Consequently, the analysis of acoustical ,  

vibrational,  o r  e lectr ical  signals,  requi res  grea t  ca re  to achieve full limiting 

accuracy  for the data available. 

accuracy  is well  recognized, and has been the subject of intensive study by 

communications engineers and other investigators for many years .  

Extreme ca re  must  be taken to insure that 

The problem of correlat ion and spec t ra l  

1 

Although the problem associated with accuracy has been c a r e -  

fully examined, there  is a second type of problem that has  not received the 

s a m e  degree of attention. 

made  in conventional correlation and spectrum analysis that  the data or 

waveforms being analyzed a r e  generated by a stationary process .  

a r y  process  is one in which any probability statement about the waveform 

values a t  specified t imes remains  t rue if  a l l  the t imes a r e  uniformly shifted 

by any given constant amount. Physical interpretation of this definition 

implies  that  a stationary process  is one in which the underlying random 

waveform generating mechanism does not change with t ime.  

This second problem resu l t s  f r o m  the assumption 

A station- 

3 
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Unfortunately, very few processes  can be totally justified as 

stationary,  and therefore it has  often been necessary  to r e s o r t  to  approxi- 

mation of the stationary case  in some way i f  a correlat ion or  spec t ra l  

analysis  is to  be performed. 

by  a stationary process  is rest r ic t ive.  Conventional s ta t ionary estimation 

theory does not apply adequately to many important waveforms and random 

signals in which the parameters  generating the process  do va ry  with t ime ,  

or  in other words,  a r e  nonstationary. 

The assumption that a signal is generated 

This section of the r epor t  presents  and justif ies a method of 

off-line correlat ion function estimation for signals generated by a non- 

s ta t ionary process .  

way which makes the assumption of stationarity unnecessary.  

e r r o r s  in the correlation function estimation procedure will resu l t ,  these 

e r r o r s  a r e  minimized according to  a t e s t  function cr i ter ion.  

The theory underlying the method is postulated in a 

Although 

A recent technical paper discussed a theory and method for 

correlat ing,  in rea l - t ime,  signals that a r e  generated by nonstationary 

p rocesses .  The theory was developed for on-line, physically realizable 

analysis  and is l imited to one-dimensional f i l tering operations.  Thus,  the 

method can be applied using standard analog or  hybrid computer techniques. 

Except for  the pure delay in the co r re l a to r ,  no data s torage i s  required.  

In this  section of the repor t  an  off-line theory is presented which is a 

modification and extension of the rea l - t ime theory of reference [2]. 

2 

There  a r e  many practical nonstationary data processing 

problems where immediate read-out of the correlation function i s  not 

requi red .  

ation of the signals and computation of the correlation function. 

can  then be made available for processing because,  a t  any given point in 

running t ime,  both past and future data may  be used for the correlat ion 

analysis .  

in nonstationary correlation analysis may be made smal le r  in the nonreal-  

t ime (off-line) case .  

In these problems a period of t ime may elapse between gener-  

More data 

As a resu l t  of the greater  amount of data ,  the e r r o r s  involved 

4 
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Other advantages a re  associated with the nonreal- t ime approach 

to  correlat ion analysis .  

both positive and negative shifts between signal pa i r s ;  that is ,  the correlat ion 

function may  be  computed a s  a two-sided function of the delay var iable  T 

Also,  since realizabili ty conditions need not be specified for  the f i l t e r s  in 

the cor re la tor  , ra ther  general  correlator  derivations can be  handled without 

se r ious  complication. 

the high-speed digital computer can be used for computation of nonreal- t ime 

correlat ion functions. 

F i r s t ,  correlat ion functions may be computed for 

. 

Finally, and perhaps the grea tes t  advantage of all, 

Although it i s  possible to develop m o r e  general  and m o r e  

sophisticated approaches than that presented he re ,  it is probable that 

these would not be practical because of excess  computation t ime or s torage .  

The nonreal-t ime approach presented he re  l imits  the operations on the data 

to one-dimensional operations;  that i s ,  f i l tering operations contain only one 

independent var iable .  By so-limiting the approach, spatial  f i l tering of 

la rge  data a r r a y s  is eliminated. 

generally be brought within practical bounds. 

used herein is s imilar  to that of references [2] and [3]. 

can be  developed, some of which a r e  presented in re ferences  [4] through[l31. 

Storage and computation t imes  can thereby 

The philosophy of approach 

Other philosophies 

B .  DEFINITIONS AND PROBLEM STATEMENT 

To estimate the correlation function of a nonstationary process  

it is first necessary  to  review the definition of the correlat ion function and 

to  show that cer ta in  concepts associated with stationary processes  may  not 

be used when dealing with nonstationary processes .  Let  {,,z, <f);mi2(z')]jv=<z ...,p 

r ep resen t  a sequence of pairs  of r ea l  signals that have been generated by 

the s a m e  nonstationary random process.  The independent variable t 
usually represents  running t ime,  but can a l so  represent  a distance measu re  

in some  cases .  

p rocess  f r o m  which the correlation function is  to be est imated.  

then a single pair  of waveforms is available;  if P= 2 , then two pa i rs  a r e  

available,  and s o  on. If autocorrelation analysis is to  be  performed,  the 

theory can be applied by letting 

This sequence represents  the given information about the 

If P =  ! 

t; (t) =. i, (f) for each value of r;r 

up to  p . 
5 
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The crosscorrelat ion function, whether the process  is s ta t ionary 

or  nonstationary, is defined a s  the expected value of the lagged product of 

i ( t )  and I', ( t l  : n r  

where n is an a r b i t r a r y  integer and T represents  a t ime translation 

between the two signals: Computation of this expectation for the general  

case  will requi re  knowledge of the joint probability density function of the 

signals c', (f-?) However, i f  the process  may be assumed 

s ta t ionary,  then +,= (t, 2 )  

and may  therefore  be  writ ten a s  a function of T 

process  possesses  the additional property of ergodicity, then the correlat ion 

function may  be computed f r o m  a suitably long t ime average of the lagged 

product , i, (f) ,i, (6 - T ) 
pa i r s  of the ensemble.  

based upon the assumptions of stationarity and ergodicity,  s o  that only one 

pair  of data waveforms need be obtained for analysis .  

4, 

n t ' , ( f )  and 
remains invariant regard less  of the value of t 

only. F u r t h e r ,  i f  the 

without requiring the use of the other member  

Conventional correlat ion and spec t ra l  estimation is 

If the process  i s  nonstationary, the estimation procedure can- 

not be based on the theory associated with s ta t ionary and ergodic p rocesses .  

Instead, the expectation definition of the correlat ion function must  be con- 

s idered  as the start ing point. Beginning with the expected value definition 

given above i t  is possible to show, using the law of large numbers ,  that in 

mos t  ca ses  +,z ( t , ~ )  would be equal to the limiting sample mean of lagged 

signal product pa i r s  . Thus , 

.b .P 

In this definition the mean values of i, (t) and i2 (f) a r e  not 
removed.  
conventional definition. 

For  a zero  mean process ,  this definition corresponds to the 

6 



when the right hand side of this equation exis ts .  Note that +,z (t, 7) in 

this  equation as well  as in the expectation definition equation possesses  two 

independent var iables  f and T . This correlat ion function is therefore  

capable of exhibiting changes as a function of t ime,  t . In contrast ,  a 

correlat ion function equation based on stationary and ergodic assumptions 

precludes the capability of exhibiting changes in t ime,  because the process  is 

postulated as invariant under time translat ions.  

Equation 2 cannot be used direct ly  for correlat ion analysis of 

nonstationary signals,  because it requires  access  to  the total  ensemble of 

signal p a i r s .  However, Q;= ( 6 , ~ )  may be considered as an ideal  correlat ion 

function that is to  be  approximated by  operating on the given signal pair  

sequence {,, i, (f) ; 
mating + ,= (t,2) with l eas t  e r r o r ,  b y  processing the given P pairs of 

signals is considered in this report  a s  the fundamental objective of non- 

s ta t ionarv correlat ion analvsis.  

ti (f)/ j n =  y, z ,  . . . , p .  This problem of approxi- 

A solution to this problem may be obtained if i t  i s  carefully 

specified and l imited.  Define t5,z(tJ ?") a s  the sample mean of the given 

signal lagged products: 

where  again T represents  the delay or  displacement var iable .  

define a noise-like difference a s  

Fur the r ,  

where  n,, ( t , ~ )  i s  assumed extraneous to  the correlat ion function 

+,2 (f> r >  * In other words,  q2 ( f , ~ )  is composed of two components: 

a des i red  component +,z (f, T) and an undesired component n,, (f, T )  . 
The objective will be to  operate on the computable function 

way which suppresses  the 

of the #,2 (f, y) component. 

e,, (6, 2) in a 

n,= ( f , ~ )  component and causes  least  distortion 

7 



It is necessa ry  to  specify a c l a s s  of admissible  operations on 

the function e,, (t, T) that may be used in approximating e2 (f, TI. The 

c l a s s  should be  chosen so  that accurate approximation i s  possible, yet it 

should not be  chosen so general  as to  make the computations difficult. Let  

the output of the correlat ion operation (or analyzer)  be  defined a s  fiz (f, r ) .  
Then choose the c l a s s  of operations such that they may  be descr ibed as two 

one-dimensional f i l tering operations on (f, ; that  is , let  
:: 

where 

by the subsequent optimization process.  The functions h ( e )  and l(?') 
a r e  to  be  chosen in a way that minimizes some measu re  of the difference 

between #,z (t, I") and $',= (t, Y). 

h ( ~ )  and l ( T )  a r e  impulse response functions that a r e  to b e  specified 

Equation 5 describing the c l a s s  of admissible  operations on 

(f, I) has  not been chosen completely a rb i t r a r i l y .  Advantages a r e  a s so -  

These will be discussed at the 

wherein it will be shown that a l ternate  methods of compu- 

ciated with this particular choice of a c l a s s .  

end of section 11, 

tation can be developed for performing operations descr ibed by equation 5 .  

It i s  legitimate to  ask why a fi l tering operation on the sample 

mean of the given signal lagged products should improve the estimate of the 

correlat ion function. 

of f i l tering on 

ment  can be  obtained by fi l tering. 

One might question the validity of performing any type 

(f, r) .  There is a twofold reason  through which improve- 

On the one hand, the difference function 

( r ,  7- 1 * f  2 
i s  unwanted, and its amplitude can be reduced by the proper 

f o r m  of fi l tering. 

have a tendency to  smooth, and thus 

than 

that approximates ensemble averaging. 

On the other hand, ensemble averaging will ordinarily 

43/= (t', T) is a smoother function 

Fi l ter ing i s  capable of introducing smoothing in a way e,, (f, T) 

rl. .r 
When limits on integrals  a r e  deleted, they a r e  to be taken a s  PO a t  

the upper l imits and - oo at the lower limits. 

8 
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C. DEVELOPMENT O F  A PERFORMANCE MEASURE 

As discussed in re ferences  [2] and [3], t h ree  sources  of e r r o r  

should be  taken into account in  the correlat ion analysis of nonstationary 

signals.  

of these three  sources  of e r r o r  in t e r m s  of h ( a )  and p(7') and the 

subsequent selection of h(b:)  and ,f(?') such that the e r r o r s  a re  mini-  

mized.  

The problem a t  this point becomes one of mathematical  specification 

Substitution of (4) into (5)  yields 

fiZ (t, r> -& (a) ! (?) $,= (f - K , Y+ T )  7'dK 

+ J ~ O / { T )  fl,z (e-a, 7ytr)dYdm: 
(6)  

which makes possible the examination of the sources  of e r r o r .  

t e r m  on the right shows that the fi l tering operation will produce distortion 

of the correlation function. Distortion will exist  as a function of T, because 

of the filtering operation represented by ,l ('7'). Distortion will a l so  exist  as 

a function of f because of the operation represented  by h ( E ) .  In addition, 

examination of the second t e r m  on the right shows that the ent i re  quantity 

mus t  be  considered a s  e r r o r ,  since it represents  the fi l tering of an extraneous 

or unwanted component of the function 

of e r r o r  may be classified a rb i t ra r i ly  a s :  

The f i r s t  

e,, ( f , i r )  . Thus, the three  sources  

1. distortion of the correlat ion function as a function of f, 

2. distortion of the correlat ion function as a function 

of T, and 

3 .  noise or instability result ing f rom the extraneous component. 

Measures  of Distortion in f and Y 

In o rde r  that the distortion of the correlat ion function in t may 

be minimized, a test-type correlation function is chosen. 

should be representative (in the t dimension) of those being detected. It is 

postulated that precise  knowledge of the correlat ion function is unavailable, 

s ince that type of knowledge would preclude the need for performing a co r -  

This t e s t  function 

9 



relation analysis.  

analyzer)  affords a good, workable compromise between total  absence and 

total  presence of knowledge regarding the process .  

Test-function testing of the correlat ion operation (or  

In his review of the real- t ime nonstationary correlat ion theory 

of re ference  [Z ]  Larrowe pointed out the disadvantage that the t e s t  functions 

must  be selected before the optimization procedure m a y  be performed.  

In contrast ,  this nonreal-t ime theory does not require  selection of specific 

test-functions in the derivation, because absence of physical realizabili ty 

conditions simplifies the analysis somewhat. In this theory a general  f o r m  

may be  ca r r i ed  through the analysis, allowing the tes t  function to  be chosen 

in each particular application. Thus, for  testing distortion in f le t  

14 

where  ~ ( t )  is the tes t  function for the t -axis,  and A, i s  an a r b i t r a r y  

positive constant determining the weighting of the t e s t  function. The function 

9 ( t )  is  made uniform in T in order that  separation of distortion in f 

and distortion in T may b e  accomplished. 

It is important to a s su re  that biases  in the input data a r e  c o r -  

rec t ly  ref lected in the output of the co r re l a to r .  

attained approximately if  the c lass  of t e s t  functions is limited to those that 

have the property 

This condition can be 

t 

f ( f )  J S i  (4 du- (8) 
-m 

:: 
where  Q, (5’) is such that 4, (0) # 0 . Equation 8 may be wri t ten in the 

form: 

( 9 )  

J- .P 

In this repor t ,  functions of S writ ten with upper-case le t te rs  a r e  
Four ie r  t ransforms of their corresponding lower -case counterpar ts .  

F o r  example, 4, (3) = fg,(&) e-3rdn . 
10 



where 

yields 

U-, (f 1 is the unit s tep function. Then the Four i e r  t r ans fo rm of (9)  

an equation that will be used la te r ,  

A measure  of the distortion in f for  the chosen t e s t  c o r -  

relation function is  easily obtained by  squaring and integrating the difference 

between the output of correlation analyzer and the t e s t  function i tself .  Thus,  

let  the measu re  of distortion be defined as 

which will s e rve  to a s s e s s  the f i r s t  source  of e r r o r  in nonstationary co r re l -  

ation analysis.  

Distortion in Z may b e  handled in an analogous manner .  

F o r  testing, le t  

where  r ( T )  i s  the tes t  function and AT is another a r b i t r a r y  positive 

weighting constant. The t e s t  function is made uniform in f (which i s  

equivalent t o  being stationary),  in order that separation of this source  of 

distortion may be  attained. 

Again, the tes t  function c lass  is fur ther  res t r ic ted  to insure 

c o r r e c t  bias indication by the correlation analyzer.  Let  

(13) 

where  R,(S) is such that R , ( U ) # O .  Then, 

11 
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The distortion measure  in r is then defined s imi la r ly  as 

which makes possible the quantitative a s ses smen t  of the second source  of 

e r r o r .  

E r r o r  Measure for  t h e  Extraneous Component 

As stated e a r l i e r ,  an extraneous or noise-like component will 

be present  in the output of the correlation analyzer ,  which is represented  

mathematically by the second term on the right s ide of (6 ) .  This t e r m  must  

be made a s  smal l  a s  possible,  because its ent i re  contribution is extraneous 

by definition of 

e r r o r ,  a t e s t  function and performance measu re  must  be  selected.  

n,2 (f, T) in (4). To properly a s s e s s  this third source  of 

Consider that the function +,= (t, I) and the function 4,  (t ,  P) 

can be  visualized as two-dimensional sur faces  or a r r a y s .  The amount by 

which they differ is again a two-dimensional surface,  II,? (f, Z") . Thus,  

n12 ('f, T) i s  a two-dimensional noise waveform. Suppose that the noise 

t e s t  function is chosen s o  as to be of infinite length in both f and 7 and 

stationary in both f and T' . Fur ther  assume that an  average over t and 

an average  over T of the lagged product yields 

where  the double ba r  indicates f and ?- averaging. Note that and 

b, ('7) mus t  always be even functions if is stationary and ergodic 

in both t and T . Let the noise t e s t  function be specified a s  unbiased a s  a 

function of both t and 7 , s o  that a solution to the problem may be  obtained 

which allows the cor re la tor  to correctly indicate b iases  in  the data? 

n,, (f, r) 

.b '1. 

Correc t  readout of the biases is considered a desirable  property 
the co r re l a to r .  Therefore ,  the noise component t e s t  function should not 
contain a b ias ,  since this would cause minimization of a des i red  function. 

1 2  

of 



If, for the noise tes t  function descr ibed above, the correlat ion 

analyzer output is squared and averaged over t and Z , a total  measu re  

of the instability or extraneous noise response will be obtained. Let 

Equation 1 9  describes the noise response or instability in a 
.b St' 

simple measu re .  

t ime-averaging correlat ion functions of the extraneous component y/lz (< ?') 

along each of i t s  two independent var iables .  

two correlat ion functions to be representative of 

case .  

The functions a, (a) and b,(?) can be considered a s  

An investigator may choose these 

n,= (e, r) in each specific 

The Total  Per formance  Measure 

A total assessment  of the e r r o r s  involved in nonstationary non- 

rea l - t ime correlation analysis can be  obtained by summing the performance 

m e a s u r e s  representing the three  sources  of e r r o r .  

m e a s u r e  be defined as :  

Let the total performance 

By changing the values of the a rb i t r a ry  pa rame te r s  2 and , the various 

sources  of e r r o r  may be t raded against one another.  

.I. 4% 

Note.that P .  does not contain an a rb i t r a ry  positive weighting 
constant a s  do P' and P, . The solution can always be normalized s o  
that  any constant association with & may be removed. Therefore ,  such 
a constant is superfluous. 

13 
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The point has  been made that the correlat ion analyzer must  

indicate a t  its output the co r rec t  value of the b iases  in the input data .  

way of insuring approximately cor rec t  bias  reading is to  constrain the z e r o  

frequency gains of the two filtering operations represented  by x k )  and A(?) 
to b e  equal t o  unity. 

to  b e  incorporated in the solution for  minimum corre la tor  e r r o r :  

One 

Therefore ,  the following two constraint  conditions a r e  

J 

The problem then becomes one of minimizing 

the constraints specified by (21) and ( 2 2 ) .  
@ subject to satisfaction of 

It should be realized that the development of a performance 

measu re  is to  a grea t  extent a rb i t ra ry .  

been taken. The one presented here has been selected because it is relatively 

general ,  i t  leads to a precise  optimal solution (in the sense of the chosen pe r -  

formance measu re ) ,  and it correctly ref lects  the sources  of e r r o r  and des i red  

constraints .  Of major  importance he re  a r e  the facts  that this approach ex- 

hibits the fundamental e r r o r s  of nonstationary correlat ion analysis and that 

the e r r o r s  a r e  minimized to  the extent possible. 

Many different approaches might have 

D .  CORRELATION ANALYZER DETERMINATION 

The minimization of the performance measu re  is accomplished 

by determining the extremals  of the performance measu re  with Lagrange 

multiplier side conditions. 

both /J ( K )  and , f(r) must  be determined. These equations a r e  

Two variational equations will be obtained because 

(equation continued on next page) 

14 



and a similar equation with h(k )  subjected to  a variation instead of ,l(9’). 
In these equations, A, and A, a r e  Lagrange mult ipl iers  to  be de te r -  

mined in such a way that the constraint conditions (21) and (22)  a r e  satisfied.  

The extremals  of (23) a r e  obtained by performing the following 

operation on I ]  : 

Evaluating (24) and inter 

%I € - 0  = *  
.II hanging orders  of in-egration -0- yie 

S 

where  

.I. -8. 

Interchange of o rde r s  of integration, when performed a s  indicated 
in ( 2 5 ) ,  can be easily justified for m o s t  s e t s  of practical  t e s t  functions. 

15 
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Application of the fundamental theorem of the calculus of variations allows 

the ex t remal  condition to be  written as: 

The second and third t e r m s  of this equation a r e  functions of 7' , whereas  the 
f i r s t  and fourth t e r m s  a r e  not functions of 7' . Suppose 1, is chosen 

such that 
~ 

Then, i f  the result ing extremal  equation satisfies the constraint  condition, 

the equation is a solution to the problem. Substituting (30) into ( 2 9 ) ,  the 
ex t remal  equation becomes 

n 

This integral  equation may be solved by Four ie r  transforming the individual 

t e r m s .  The result ing equation is  (making use of ( 1 4 )  ): 

16 
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In order  that a check might be made to insure  that the constraint  condition 

i s  satisfied,  the l imit  a s  S - 0 of (32) i s  taken. The resu l t  i s  

because for unbiased noise t e s t  functions 

constraint  conditions can be satisfied, since (34) admits  the conditions 

L ( o )  = I and H(o) = { .  The final expression for L (5) becomes-” 

s-ro Am 8, (S) is finite. Thus,  the 

J. 

I - , -  , -  - 

, . I .  . - -- s -s 
(35) 

where ,  since B,, (SI is even in 5’ , i t  may be wri t ten as :  

The solution for  h (K) is obtained in a s imi la r  fashion, however, 

signs within the derivation a r e  different. Briefly,  

-0 

where  

.b 

“*Proof that L ( 5 )  a s  given in  (35) produces minimum corre la tor  e r r o r  
(according to the performance measure with constraints incorporated) may 
be obtained in a straightforward manner.  
substituted into the expression for 11 - 0 .  Then, the resulting expression 
is shown to be  greater  than or equal to ze ro  for all 

The extrema1 condition (25) i s  

and 779). 

17 
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Equations 35 and 3 9  specify that the t ransfer  functions of the two optimum 

f i l te rs  to  b e  used in  the correlation operation descr ibed in (5).  

The theory,  a s  described in this r epor t ,  has  been derived in a 

relatively general  fashion, t o  provide flexibility in i t s  application. 

the number of member  signal pairs has  not been specified, and thus,  

correlat ion of one pair  o r  severa l  pairs  is possible. 

functions have not been specified, these functions may be chosen in accordance 

with the problem a t  hand. 

c ros  scorrelat ion,  autocorrelation follows as a special  case  without modification 

F i r s t ,  

Also ,  since the t e s t  

Finally, since the theory has  been developed for  

I t  will b e  shown that there  a r e  two different ways in which the 

correlat ion operation of (5)  may be implemented. 

implemented by d i rec t  f i l tering of the a r r a y  represented by 

s teps  to the computation a r e  the following: 

First, the operation may be 

e,2(t, 7) . The 

1 .  Compute the two-dimensional a r r a y  representing qz (t, 
by adding and storing the individual lagged products,  

i t  i ( f ) ,C;  (f-rIj .i, ( t I  ( f - ~ ) ,  ... ' P '  C' (t) ( t - r ) .  

2.  Fi l ter  the a r r a y  in each  dimension. First, for each 

setting of t , filter the 7- dimension with a f i l ter  whose 

impulse response is / (7). 
dimensional a r r ay ,  f i l t e r  the t dimension for each 

setting of with a fi l ter  whose impulse response i s  

Then in the resulting two- 

h (a) The resulting a r r a y  is the output of the 

correlation operation. 

The second way in  which the operation may b e  performed i s  a 

Figure 1 shows a network r e su l t  of the network properties of equation 5 . 
configuration whose output for  inputs i, ( t )  and ~ i2 (t) is: 

Upon performing an average over the 

equation is (5).  

P p a i r s  of signals,  the result ing 

Thus,  the network configuration may be used to compute 

18 
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each np,z (t, T) . Averaging over the P output a r r a y s  then 

produces the correlat ion operation specified by equation 5. 

The f i r s t  approach requires  m o r e  s torage ,  but is probably 

m o r e  efficient. 

puters .  

fo r  a fixed 7 without operating on neighboring values of 7 . Thus, one 

line of f (with T fixed) m a y  be processed and printed out before moving on 

to  the next fixed value of ?- . The advantage of this second approach is that 

l e s s  s torage is required.  It is probably m o r e  suitable for smal le r  digital o r  

hybrid computers .  

It is generally suitable for  modern high-speed digital com- 

The second approach allows the computation of correlat ion functions 
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LII . EXPERIMENTAL STUDY O F  NONREAL-TIME 
CORRELATION ANALYSIS 

A digital computer program was developed for performing nonreal-  

The purpose of this program was t ime nonstationary correlat ion analysis.  

twofold: first,  it was to be used for experimental  verification of the foregoing 

theory,  and second, it was to be used to  analyze a pilot run of NASA flexible 

booster data.  

that the computer output might be displayed in graphical fo rm.  

descr ibes  the resu l t s  of the experimental study. 

Isometr ic  plotting subroutines were  a l so  developed in o rde r  

This section 

A .  ANALYZER TESTS 

The f i r s t  t es t s  performed with the theory and program involved 

the autocorrelation of an uncorrelated,  near ly  stationary noise waveform 

and the c rosscor re la t ion  of two uncorrelated waveforms that were  independent 

of each other.  F o r  this tes t  the Fourier  t ransforms of the two f i l ters  were  

chosen a s  optimum for  P, (51 , B, ( 5 )  , Q,  (5) and A, (s) each equal 

to unity. The f i l t e rs  themselves. were then of the forms  

0.5 
s f 

0.5 
s 

f -  
L ( S )  = 

t f -  
27c /a00 277 * j ooo  

and 

0.5 0- 5 
s s 

f t- I - -  
25 2 5  

H(5)  = ( 4 3 )  

Figure  2 shows the computer plot of the steady-state analyzer output for the 

autocorrelation case  (and for positive Whereas , the t rue  co r re l a -  

tion function would exhibit an impulse "ridge" for and ze ro  value 

elsewhere , the cor re la tor  output only approximates these conditions. F o r  

l a rge  values of I , the correlator  output fluctuates about ze ro ,  thus exhibit- 

ing the instability of nonstationary correlat ion analysis .  

near  ze ro ,  positive correlation is exhibited; the correlation i s  spread about 

= 0 instead of being bunched at p- o . Thus , some distortion of the 

'z- only). 

T -  0 

F o r  values of 7- 

t rue  correlat ion function occurs  along the T axis .  Notwithstanding these 

21 
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shortcomings,  it is r a the r  c lear  that the cor re la tor  is operating a s  predicted 

in theory,  and that the output is very valuable in characterizing the signal 

on which the cor re la tor  operated. 

t imes  of the two f i l t e rs ,  represented by L ( 5 )  and H ( S )  were  chosen to 

exhibit the sources  of e r r o r  involved in nonstationary analysis .  

I t  should be  noted that the smoothing 

The crosscorrelat ion of uncorrelated noise produced a plot 

similar to that of Figure 2, except that  there  was no r i s e  in output level for  

small values of T .  In other words,  the cor re la tor  output for  every  value 

of Y fluctuated about zero .  This resu l t  is a s  anticipated, since the t rue  

correlat ion function is ze ro  everywhere. 

In another tes t ,  two signals were  crosscoprelated whose t rue  

c rosscor re la t ion  function was a stationary exponential: 

F o r  this t gain se t  

equal t o  unity, while R, (3) was made equal to  the Four ie r  t r ans fo rm of (44): 

I 
s R,(SI = 

f f -  
200 

(45) 

The analyzer f i l ters  were  then given by 

(46) 
0.5- - 0.65 ~ o - ' s  c 0.5 f 0.65 x /O-3s 

L(s) = f f f.55 x /0-3s f ro-" S 2  I - f . 5 ~ ~  ~O-?S + /0- 's2 

and 

0.5 0.5 
s f - -  S 

20 20 

H ( 3 )  = 
I + - -  (47) 

Figure 3 is a computer plot of the steady-state cor re la tor  

output for the exponential t es t  (and for  positive T only). Here ,  distortion 

of the t rue  correlation function occurs as anticipated. In addition, the usual 
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instability exists as a resu l t  of finite smoothing t ime.  

because of a change in amplitude scale  the instability appears  greater  h e r e  

than in the uncorrelated noise tes t ;  actually the instability is smaller in the 

exponential t e s t .  Again, the information obtained f r o m  the co r re l a to r  would 

be ve ry  useful in describing the relationship between the two input s ignals .  

It should be noted that 

In the t e s t s  described thus far the smoothing represented  by the 

f i l ter  H ( S )  was made finite even though the t rue  correlat ion functions were  

near ly  stationary.  Of course ,  some instability resu l t s  because of this finite 

smoothing. 

of the t r u e  correlat ion function may then be detected by the co r re l a to r .  

exhibit this ability to detect changes, a t e s t  was performed in which the t rue  

correlat ion function undergoes an abrupt change in t ime.  More specifically, 

two signals were  generated whose t rue  c rosscor re la t ion  function is uniform 

in T and undergoes a s tep change in t : 

The advantage of using finite smoothing is that changes in t ime 

To  

In this t e s t  &’, (SI, B, (SI, Q, ( s )  and A, ( S )  were  all set  equal to  unity 

once again. The f i l t e rs  used were 

0- 5 
s f 

0.5 
s 

f - -  
L ( S )  = ’ +/000 f 000 

and 

0.5 0.5 
s 

20 Z0 

H(S) = - 
I - -  s 

i + -  

(49) 

Figure 4 is a computer plot of the output of the cor re la tor  for  

the abrupt s tep in t t es t .  It is seen that the cor re la tor  output smoothes 

the abrupt change, but does gradually a s sume  the new level.  

that the uniform nature of the t rue  correlation function along the 

being detected. 

would be  expected that the cor re la tor ’s  output a t  f = 0. 16 sec .  should be  

And, it is c lear  

T axis is 

Because of the symmetry of the f i l t e rs  in the co r re l a to r ,  i t  

25 
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midway in i t s  change f r o m  the old to  the new value of the t rue  correlat ion 

function. 

new value; an explanation is that the original noise source  i s  not precisely 

s ta t ionary or that the ana lyzer ' s  instability causes  e r r o r s  in  the output plot. 

Again, it becomes c lear  that the co r re l a to r ' s  output would be  valuable in 

character iz ing the input signal pair. Additionally, the cor re la tor  is capable 

of following changes in the statist ics of the input s ignals .  

The plot shows that the co r re l a to r ' s  output is late in r is ing to the 

The tes t s  described above give strong indication that the non- 

rea l - t ime correlation theory does per form as expected when implemented. 

Important features  of each t rue  correlation function a r e  detected by the 

c o r r e l a t o r ,  and the sources  of e r r o r  appear adequately taken into account. 

B .  APPLICATION TO BOOSTER DATA 

In the analyzer tes ts  descr ibed above, all of the input signals 

w e r e  generated b y  the digital computer and were  then used a s  inputs to the 

co r re l a to r  program.  

for  generation of approximately stationary and approximately uncorrelated 

s ignals .  I t  seemed,  therefore ,  that some type of t e s t  on actual experimental  

data ought to be performed. 

Flight Center ,  NASA, made available seve ra l  records  of flexible booster 

tes t  vibration waveforms. F r o m  these,  one was selected because of i ts  

apparent  nonstationarity. 

The pr imary signal source was a computer a lgori thm 

The Computation Laboratory of Marshal l  Space 

Figure 5 is a plot of this waveform. 

An autocorrelation analysis was performed using ve ry  simple 

t e s t  functions to optimize the analyzer;  p, ( 5 )  , 0, ( S ) ,  4, (S )  and A, (3) 

w e r e  all s e t  equal to  unity. The f i l ters  used were  

0. r 
s 

f - -  
Y O 0  

f 
0.5 
s I f -  /o 0 

L O )  = 

and 
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. 

Figure  6 shows the cor re la tor  output for  positive 7 . The 

running t ime scale  corresponds to the waveform t ime scale  in F igure  5 .  

The  cor re la tor  output shows fluctuations in amplitude a s  a function of both 

independent var iables .  

follow the intensity of the waveform i tself .  

become evident f r o m  the plot, indicating the bunching of intensity a t  cer ta in  

f requencies .  Finally, note that for 40 sec .  f < 60 s e c . ,  the plot is 

somewhat ra i sed ,  indicating a shif t  in b ias .  

waveform itself makes this bias  shift evident. 

Fur ther ,  for z e r o  delay the amplitude appears  to 

Note that cer ta in  periodicit ies 

Careful examination of the 

A similar analysis w a s  performed for negative values of T. 

Figure  7 shows a computer plot of the r e su l t s .  

only minor variations between corresponding values of positive and negative 

(Note that the number of computed l ines and the two sca les  a r e  not the 

Careful examination shows 

T 
s a m e  in Figure 6 and 7.  ) 

To more  carefully examine the periodicities in the booster data,  

a spec t rum was computed by transforming the correlat ion plot along the 

positive T axis. The spectrum was a rb i t r a r i l y  defined a s  

PCt,f) = 2 +w,r)  ' r n ( T ) .  cos 2 T f l  : d?- i 
where m@) is a multiplicative window given for the 

particular run by 

( 5 3 )  

Figure  8 is the result ing spec t ra l  plot fo r  the booster data. 

appears  a s  the lower independent variable axis and frequency appears  on 

the upper independent variable axis.  

responds to the waveform t ime scale of Figure 5. 

Running t ime 

Again, running t ime on the plot co r -  

Examination of the spectral  plot shows that a predominance 

of power l ies  below 2 Hz and about the frequency of 7 Hz .  The plot c lear ly  

shows the change in b ias ,  discussed e a r l i e r ,  by i ts  shift in ze ro  frequency 
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Figure 8 COMPUTER SPECTRAL PLOT OF BOOSTER 
V IBRATION S IGNAL OBTAINED BY 
TRANSFORMING CORRELATION ANALYZER 
PLOT. 



value for 4 0  sec .  c f < 60 s e c .  Although the amplitude of the power around 

7 Hz does fluctuate, the frequency remains  relatively constant and is probably 

attr ibutable to  a bending mode. 

quency resonances,  even though these would have been detectable up to  30 Hz. 

Note that t he re  a r e  no t r aces  of higher f r e -  

F r o m  this application to booster data i t  becomes c lear  that  the 

nonreal-t ime nonstationary correlation theory,  when implemented, is capable 

of exhibiting important s ta t is t ical  information in pract ical  c i rcumstances.  

Stat is t ical  fluctuations as a function t ime in nonstationary data can be much 

m o r e  carefully studied with this nonstationary theory.  

3 3  
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IV . NONREAL-TIME (OFF-LINE) SPECTRUM ANALYSIS O F  
NONS TATIONAR Y SIGNALS 

A. BACKGROUND 

Recently, a real-t ime theory for correlation analysis of non- 
2 stat ionary signals was presented. 

mation of the ensemble average real-t ime correlation function. 

s ta t ionary correlat ion theory was subsequently extended to  the nonreal-t ime 

c a s e .  

advantages that 1) the correlation function may be  computed for positive and 

negative shifts between signal pairs ,  2) m o r e  general  t e s t  functions m a y  be 

used in optimizing the correlation analyzer configuration, and 3 )  the digital 

computer can be used for  performing the computations. 

The theory is based on optimal approxi- 

The non- 

(See Section I1 of this report .  ) This  nonreal-t ime theory has  the 

In some c a s e s ,  the ultimate desired resu l t  i s  the bes t  es t imate  

of the nonstationary correlat ion function of the signal being analyzed. 

However,  in other cases  the ultimate des i red  resul t  i s  the bes t  es t imate  of 

the nonstationary spectrum. It is  ve ry  important to rea l ize  that an optimal 

es t imate  of the nons tationary cor  relation function, when Four ie r  t ransformed,  

does not necessar i ly  yield an optimal es t imate  of the nonstationary spec t rum.  

Although transforming the correlation function to obtain a spec t rum may 

produce satisfactory r e su l t s ,  it would be  bet ter  t o  obtain the best  es t imate  

of the spec t rum directly.  One could then be a s su red  that the best  possible 

use has  been made of the limited data available for nonstationary spec t rum 

analys is .  

In view of the problem associated with t ransforming an optimal 

correlat ion function est imate ,  it  w a s  decided to  attempt the development of 

a d i r ec t  nonreal-t ime theory for nonstationary spec t rum analysis .  It was 

hoped that a companion spec t ra l  theory could be developed using the s a m e  

philosophical approach as is used in the nonreal-t ime correlat ion theory.  

If such a companion theory could be developed, then an investigator could 

choose the theory which would make his ultimate desired resul t  (i. e . ,  ei ther 

the spec t ra l  or the correlation function) most  accurate .  

a d i r ec t  theory of nonreal-t ime nonstationary spectrum analysis .  

jective will be to  present the theory, but not to go into grea t  detail  regarding 

This repor t  presents  

The ob- 
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its application. 

applied. 

nonstationary correlat ion theory.  

the s a m e  framework insofar a s  possible. 

This theory has not yet been experimentally verified or 

The notation used in this section i s  s imi la r  to that used for  the 

In addition, the theory i s  descr ibed in 

B .  DEFINITIONS AND PROBLEM STATEMENT 

Let  { ,,if (f) ; ,,i, ( 6 )  1 j . ? = I ,  Z ,  . . - J  P r ep resen t  a 

sequence of pa i r s  of r e a l  signals that have been generated by the same  non- 

stationary random process .  The independent variable f usually represents  

running t ime,  but can a l so  represent  a distance measu re  in some cases .  

This sequence r ep resen t s  the given information about the process  f r o m  which 

the spec t ra l  density is to be estimated. 

The crosscorrelat ion function, whether the process  is stationary 

or  nonstationary, is defined a s  the expected value of the lagged product of 

n i, ( f )  and n i z ( f )  : 

where  I) is an a r b i t r a r y  integer and 7- represents  a t ime t ranslat ion 

between the two s ignals .  

possible to show, using the law of large numbers ,  that in most  ca ses  

Beginning with this expected value definition i t  is 

+,12 ( t ,  r) would be equal to the limiting sample mean of lagged signal 

product p a i r s .  Thus,  

when the right hand side of this equation ex is t s .  

4. '6. 

In this definition the mean values of i ,  (f) and iz (p) a r e  not 
removed.  
conventional definition. 

F o r  a ze ro  mean process ,  this definition corresponds to the 
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Define 8,, (f, Z- ) as the sample mean of the given signal 

lagged products: 

(57)  

where  again r represents  the delay or displacement var iable .  Fu r the r ,  

define a noise-like difference as 

where  nlt (t, r )  i s  assumed extraneous to  the correlat ion function, +,= (f, T I .  
In regard  to  spec t ra ,  define the spec t ra l  density of the 

process  as 

and s imi la r ly  define 

Then if  

i t  follows that 

(5 9 )  

4. *a- 

When l imits  on integrals a r e  deleted, they a r e  to be taken a s  go at 
Note a l so  that in this spec-  the upper limits and - m 

t r a l  theory the substitution S = j w  has been used, to  improve intuitive 
insight in dealing with spec t ra l  densities. 

a t  the lower l imits .  
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With this group of definitions it becomes possible to  postulate 

the problem of nonreal-t ime nonstationary spec t rum analysis .  

the P pai rs  of signals discussed above a r e  given and that by processing 

these P 
When s o  s ta ted,  the problem of nonstationary spec t ra l  analysis may  be 

t reated analytically. 

Suppose that 

pairs, the bes t  estimate of spec t ra l  density (59) is to  be  obtained. 

It is necessary  to specify a c lass  of admissible  operations on 

the first P signal pa i r s  that may b e  used in approximating &,z ( f , W ) .  The 

c l a s s  should be  chosen s o  that accurate approximation is possible, yet it 

should not be chosen s o  general  as  to make the computations or optimization 

process  prohibitively difficult. Let the output of the spec t ra l  approximation 

operation be defined a s  X,, (f, u). Then choose the c l a s s  of operations such 

that they may be described as two one-dimensional f i l tering operations on 

@,2 ( t , ~ )  ; that i s ,  let  

where  k(A) is the impulse response function of one fi l tering operation and 

G(w,) is the t ransfer  function of another filtering operation. 

a r e  to  be specified in the subsequent optimization process  in such a way that 

some measu re  of the difference between $,,(f,W)and X , z ( < ~ )  is minimized. 

The two functions 

Equation 63 describing the c l a s s  of admissible operations on 

the given P member  signal pairs has  been chosen to take into account a 

number of fac tors  that a r e  important in nonstationary spec t rum analysis .  

F i r s t ,  i t  mus t  be recognized that k;,(t,u) 
puted if +,=(f, T) and e,, ( 6 , ~ )  a r e  available for a l l  values of T . In 

pract ice ,  i t  will generally be impossible to  compute 

of T , and therefore ,  a theory of nonstationary spec t rum analysis should 

take finite record  length into account. 

take r eco rd  length into account in  a much m o r e  d i rec t  way than the co r re l a -  

tion theory.  

and  LO) may only be com- 

q2 (t, P) for all values 

Note that the spec t ra l  theory must  
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The problem of finite r eco rd  length is accounted for  by the 

operation of Equation 63 . 
of Equation 63 is taken, the resulting equation is 

If  the inverse t r ans fo rm (with respec t  to  k )  ) 

This equation shows clear ly  that ~ ( r )  weights 8, (r, r >  
that i s ,  y(?’) fo rms  a multiplicative window. If this window, y ( 7 )  has 

negligible value for suitably large magnitudes of T , then %=(t,r) need 

not be computed. 

account. 

along the T axis ;  

It i s  in this way that finite r eco rd  length will  be taken into 

The admissible  c lass  described by Equation 63 a l so  has  the 

advantage that the computation can be  ca r r i ed  out in different ways.  

var ious computational methods will be  discussed af ter  the optimization 

procedure i s  descr ibed.  

These  

Yet another advantage of the f i l ter ing operation of Equation 6 3  

i s  that  spatial  f i l tering of square data a r r a y s  is not required.  

the high cost  of spatial  f i l tering (assuming optical computing techniques a r e  

not used) ,  the fi l tering operation has  been limited to two one-dimensional 

operations.  

Because of 

C. DEVELOPMENT OF A PERFORMANCE MEASURE 

The problem of nonstationary nonreal-t ime spectrum analysis 

a s  postulated in this report  may now be stated as the determination of k (2) 
and G(w,) in such a way a s  to  make the output of the spec t ra l  operation X,, ( f , ~ )  

approximate a s  closely as possible the spec t ra l  density $,= (f, u). 

this optimal approximation, i t  is necessary to carefully quantify the e r r o r s  

To pe r fo rm 

.L .a. 

In this report, functions of w written with upper case  le t te rs  a r e  
Four i e r  t ransforms of their  corresponding lower case  counterparts.  F o r  
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produced by  the spec t ra l  operation or  analyzer and then to minimize these.  

T h e r e  a r e  three  sources  of e r r o r  in spec t rum analysis of nonstationary 

s ignals  just  as there  a r e  three  i n  the corresponding correlat ion analysis 

problem. 

that mus t  be incorporated in the spectral  analysis case .  

However, in addition there is the finite r eco rd  length constraint  

The sources  of e r r o r  a r e  readily identified by substituting 

(62) into (63): 

The first t e r m  on the right shows that the fi l tering operation produces 

distortion of the desired spectral  density, along both axes 

(independent var iables) .  

that  the ent i re  quantity must  be considered a s  e r r o r ,  since N , z ( f , u )  is an 

extraneous or  unwanted component of the function @,= ( f , w )  . 
the three  sources  of e r r o r  m a y  be classified a rb i t ra r i ly  as: 

k;lz {f, w ) ,  

Examination of the second t e r m  on the right shows 

Therefore ,  

1. distortion of the spec t ra l  density as a function of t, 

2. distortion of the spec t ra l  density a s  a function of LL ] ,  

and 

3 .  noise or instability result ing f r o m  the extraneous 

c orrip onent . 
In addition to the three  sources  of e r r o r ,  finite record  length must  be taken 

into account. 

Measures  of Distortion in  f and w 

In order  that the distortion of the spec t ra l  density in t 

This t e s t  
may 

be minimized, a test-type spectral  density function is  chosen. 

function should be representative (in the 

detected.  

postulated a s  unavailable, since that  type of knowledge would preclude the 

t dimension) of those being 

Of course ,  precise  knowledge of the spec t ra l  density has  been 
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need f o r  performing a spec t rum analysis.  

spec t ra l  operation or  analyzer affords a good, workable compromise  between 

total  absence and total  presence of knowledge regarding the p rocess .  

Tes t  function testing of the 

Let  the tes t  function be given by 

where  ~ ( f )  is the t e s t  function in f , and where 

tive constant determining the weighting of the t e s t  function. 

i s  made  uniform in w in o rde r  that separat ion of distortion in f and 

distortion in w may be accomplished. 

2 ,  is an a r b i t r a r y  posi- 

The function g ( t )  

The t e s t  function (/If) will be res t r ic ted  in order  that steady- 

s ta te  spec t rum analyzer outputs possess c o r r e c t  values.  

only t e s t  functions which adequately tes t  the steady-state output e r r o r s  will 

be considered admissible .  

functions which have the following property:  

In other words,  

Thus, g ( t )  must  be chosen f r o m  the c l a s s  of 

where Q, (w) is such that Q, (0) # 0. Equation 67 may be writ ten in  the fo rm 

where  a_,(+) is the unit step function. Then the Four ie r  t ransform of (68) 

yields 

an equation which will  be used la ter .  

A measure  of the distortion in f for  the chosen t e s t  function 

is easi ly  obtained by squaring and integrating the difference between the 
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output of the spec t ra l  analyzer (or operation) and the test function i tself .  

Le t  the m e a s u r e  of distortion be  defined a s  

I t  will  be  assumed that q(T)  
r e a l .  Accordingly p f  is r e a l .  Equation 70 will  s e rve  to a s s e s s  the f i r s t  

source  of e r r o r  in nonstationary spectrum analysis .  

is real, and therefore  y @ ) = z ~  G&,)ddf is 'S 
Distortion in w produced by the spec t ra l  analyzer may be  

handled in a similar manner ;  however, a frequency domain tes t  function 

mus t  be used. F o r  testing, let  

where  V ( w )  i s  the u -axis tes t  function and 2, i s  an  a rb i t r a ry  positive 

weighting constant. The tes t  function is made uniform in f (equivalent to 

being s ta t ionary) ,  in order  that separation of this source of distortion may 

be obtained. Postulate that Y ( u )  need not be r e a l ,  but that i t s  inverse  

Four i e r  t ransform is r ea l .  

Again, the t e s t  function class is res t r ic ted  to insure  co r rec t  

Le t  y ( r )  , the inverse s teady-state  reading of the output of the analyzer .  

Four i e r  t r ans fo rm of V ( w ) ,  possess  the property 

that is ,  y(?-) is  the order  of f as T approaches ze ro .  

The measu re  of distortion in w is then defined a s  

where 
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Note that s ince V ( u )  need not be  rea l  that  the sqaure  of the modulus is used 

in the measu re .  

applied, it is found that 

If (74) is substituted into ( 7 3 )  and P a r s e v a l ' s  theorem is 

P c 

This relatively simple measu re  will s e rve  to  a s s e s s  the second f o r m  of 

e r r o r  in  nonstationary spec t rum analysis.  

E r r o r  Measure for the Extraneous Component 

An extraneous or noise-like component will be  present  in the 
output of the spec t rum analyzer .  

cally by the second t e r m  on the right side of (65) .  

as small as possible because i t s  entire contribution is extraneous by  definition 

of N,z (F ,u )  

properly a s s e s s  this third source of e r r o r .  

This component is represented mathemati-  

This t e r m  must  be made 

in (61). A t e s t  function and measu re  must  be selected to  

Consider that the function $,* 6 w )  and the function @ (t, W )  

The amount by can be  visualized a s  two-dimensional surfaces  or  a r r a y s .  

which they differ is again a two-dimensional su r f ace ,  A/,2(t,d). Thus,  

A,2 (e, U )  can be considered a s  a two-dimensional noise waveform. 

Suppose the noise test function ~ J , ~ ( i , d )  is chosen to be of 

infinite length in t . Then choose the measu re  

where  

and where the ba r  indicates a time (f ) average.  

a l ly  be complex, the square of the modulus i s  used in the measu re  (77). 

Since A/,= (f, w )  will gener- 

Note 
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that  an integration of e r r o r  over frequency and an  average of e r r o r  in t ime 

is incorporated in the measu re .  

"mixed" function (with t ime and frequency var iab les ) ,  it is not surpr i s ing  

that a different type of summing operation must  be  used for  each axis of the 

measu re .  

Since the extraneous component is a 

By an extended fo rm of Pa r seva l ' s  theorem, the performance 

m e a s u r e  may  be writ ten as 

where  e, (f, r), the inverse Fourier  t ransform of E, (t; w )  , is given by 

Evaluating & then yields 

At this point, (t, W )  i s  further specified and limited by 

placing restr ic t ions on n,z(i,r) . Let  n , = ( f , ~ )  possess  the property 

The function f,(Y) may be  rapidly fluctuating, since it i s  not the resu l t  of any 

smoothing operation. The function c , (A)  i s  seen to be even in 2 by examin- 

ation of Equation 82 for any fixed value of T . Then, substitution of (82) 

into (81) yields the final f o r m  of the measu re  for assess ing  the noise or 

instabil i ty in nonstationary spectrum analysis:  

(83) 
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Fini te  Record Length Constraint 

In addition to the three sources  of e r r o r  descr ibed above, 

account must  be taken of the problem of finite r eco rd  length. 

problem of r eco rd  length indirectly en te r s  into nonstationary correlat ion 

ana lys i s ,  i t  en te rs  direct ly  into nonstationary spec t rum analysis .  Examin- 

ation of the definitions of (59) and @,, (t, d ) (60) shows that all 

values of ?-' 

quency w . 
selected to  account for  finite record length. Equation 64 shows that 7(T) 
f o r m s  a multiplicative window, thereby limiting the required length of data  

(at  the cost  of loss  of frequency domain resolution).  

Whereas  the 

p,, (+, W )  

a r e  required for the computation of the spec t rum a t  any f r e -  

The spec t ra l  operation or analyzer configuration has been 

The constraint  on record length will be incorporated by obtaining 

a m e a s u r e  which increases  a s  y(T) takes on grea te r  spread  on the 

By penalizing for la rge  width in T , r eco rd  length rnay be held to a minimum. 

Let  

t- axis .  

where pS 
weighting function which may be chosen to weight heavily the contribution to 

occurring a t  large values o f  r . 

is the measu re  of spread,  and v (T )  is an  a rb i t r a ry  positive 

5 
The Total  Performance Measure 

A total assessment  of the e r r o r s  involved in nonreal-t ime 

nonstationary spectrum analysis can be obtained by summing the performance 

m e a s u r e s  fo r  the three  sources  of e r r o r  and the record  length penalty measu re .  

By changing A t  and 2." , a s  well as the tes t  functions, the various sources  

of e r r o r  may be t raded against one another .  Let  the total measu re  be defined 

a s  
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In addition to  this measure ,  two constraints must  be chosen 

which force  the spec t rum analyzer to  properly indicate steady- s ta te  conditions. 

These  conditions insure that ,  even though distortion occurs  on each  axis of 

the spec t ra l  density when detected, the distortion does not shift the average 

level  of the spec t ra l  density. The constraints a r e  

and 

These  constraints will be incorporated by introducing Lagrange multiplier 

s ide conditions into the equations to be  extremized. 

As in the correlation theory,  this spec t rum analysis theory has 

The been developed in t e r m s  of performance measu res  for  assess ing  e r r o r .  

approach and specific t e s t  function fo rms  chosen may appear largely a r b i t r a r y .  

It is admitted he re  that a number of different approaches might be taken. 

one presented he re  has been selected because it is relatively general  but 

manageable,  it leads to  a precise  optimal solution (in the sense of the per -  

formance  measu re ) ,  and it properly ref lects  the sources  of e r r o r  and des i red  

constraints .  

The 

D. DETERMINATION O F  THE OPTIMUM SPECTRUM ANALYZER 

The minimization of the performance measu re  is  accomplished 

by determining the extremals  of the following equation: 
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where  A,  and A, a r e  Lagrange multipliers to  be  determined. Two 

different ex t remal  equations must  be obtained, one in which k ( J )  
jected to  a variation and one in which G(U) is subjected to  a variation. The 

objective is to  determine the functions k(A,)and G(&) in such a way that the 

per formance  m e a s u r e  Pr is minimized and the two steady-state constraint  

conditions a r e  satisfied.  

i s  sub- 

The first extremal  equation, with y(r)  subjected to a variation, 

i s  obtained by the usual  calculus-of-variations approach. The function q (7) 
J 

is replaced by  y(r) f $?'(T) where T9(r) is an a r b i t r a r y  differentiable 

function and d' is an a rb i t r a ry  small  parameter .  Substitution into (87)  9 
yields the equation 

Then the following equation is formed 
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a 
yielding 

where  

The parameter  la in  the above ex t remal  equation must  assume 

a value that allows the constraint  on f&>, 

Suppose that A, is  chosen t o  satisfy the following equation: 

Equation 86, to be  satisfied.  

=o 
Then, if for  this value of 

the constraint ,  a solution will have been obtained. 

(91) and subsequent application of the fundamental theorem of the calculus 

of variations yields an extremal  equation of the f o r m  

Aa , the  result ing ex t remal  equation satisfies 

Substitution of (93) into 
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which may  be  solved fo r  9 (T> : 

(95)  

where  K@) is defined in (87). 

the constraint  relation. 

Equation 95 will be shown later  to satisfy 

The second extrema1 equation, with k ( A )  subjected to a 

variation, is obtained by the same mathematical  method. 

t ions b ec  ome 

The major  equa- 

where  
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Suppose 16 i s  chosen to satisfy the equation 

The ex t remal  equation then becomes 

(99)  

k (  A i )  e, (A -2,) d;i ,  = 0 +%J 
At this point a somewhat different approach is taken for  the second ex t remal  

equation. Since Equation 101 is an integral  equation with infinite l imits  on 

all integrals ,  it  may be Four i e r  transformed with respec t  to the var iable  ii.. 
The result ing equation is 

The function .,(A) i s  both r e a l  and even in h ; thus e,&) is a l so  r e a l  

and even and may be writ ten a s  the following product 

(103)  cnG4 = Q,b) c, C-w) 

Substitution of (103) into (102) and subsequent solution for K(u) yields 

It mus t  now be shown that y&) in (95)  and K(w) in (104) 

Suppose that in (95) sat isfy the two constraint  relations,  (86) and (87).  

and (104), I" and w simultaneously approach zero .  The two equations 
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then approach the following values 

where  a, 6, C, and d a re  constants. Consequently, in  the l imit ,  

the two equations becomes 

and 

Thus,  the constraint conditions can b e  satisfied,  since (107) and (108) admit 

the conditions ?(a) = 1 and K(u)= 1. 

become 

The f inal  expressions for  g(z) and K ( ~ )  

z :;: * (+) y ' k )  
(109) g( r )  = 

[ F ~  (r) + "CI'] (x) y'(r) 
% Kz 

.b '1. 

In (105) use has beenmade  of (72). 

Proof  that y k )  as given in (109) produces minimum spec t ra l  analyzer 
d. .Ir -4.1. 

e r r o r  (according to the performance measu re  with constraints incorporated) 
m a y  be  obtained in  a straightforward manner .  The extrema1 condition (91) 
is  substituted into the expression I9 - PT Then, the result ing expression 
is shown to b e  greater  than or equal t o  ze ro  for all 6' and y9(T) which 
sat isfy the constraint  condition. 
that  K(w) as given in  (110) produces minimum spec t ra l  analyzer e r r o r  
(according to  the performance measure  with constraints incorporated).  

. 

A similar proof m a y  be  obtained which shows 
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and 

I t  is seen that (109) is a t ime domain equation, whereas  (110) is a frequency 

domain equation. 

prising in view of the mixed-domain nature  of the spec t rum analyzer or 

operation ( 6 3 ) .  

Therefore ,  its inverse  Four ie r  t ransform k(A) is a l so  r e a l  and even in 2 . 
The function y ( r )  will  be even in  T if and y k )  a r e  chosen 

a s  even functions. 

note that the quantities K, and G2 appear in (109) and (110) in a way which 

does not affect the f o r m  of solution. Adjustment of lw,  2 ,  and the gain 

associated with V(T) makes it possible to obtain solutions independent of the 

values of K2 and G, . Generally, frequency bandwidth and t ime duration 

considerations will govern the settings of the pa rame te r s  - 
L. gain of 

m e a s u r e  I a r e  unimportant. Equations 109 and 110 complete the spec i -  

fication of the optimal spec t ra l  analyzer or operation given in ( 6 3 ) .  

Again, this domain contrast  in the solutions is not s u r -  

Note that K(w) in (110) i s  always r e a l  and even in ,w . 

&(r) , v ( T )  

However, in general, ~ ( r )  need not be even. Finally, 

A: A 2  
--t and the 

K2 Gz v r >  
K2 

Thus,  their  values in relation to  the original performance 

E. METHODS FOR IMPLEMENTING THE OPTIMUM 
SPECTRUM ANALYZER 

As stated ea r l i e r ,  the allowable c l a s s  of operations for per -  

forming the spec t rum analysis has been chosen both to allow good spec t ra l  

es t imates  and to lend versat i l i ty  in  implementation. 

var ious methods for  realizing the spectrum analyzer will be  described in 

detail .  

In this section, the 

The first method of computation involves the d i rec t  u se  of 

Equation 6 3 .  In this case ,  the procedure is 1) computing e,, (f, r )  f r o m  

(57) for the available data,  2) Fourier t ransforming ( 6 0 )  yielding ol2 (f, w )  

3) fi l tering the result ing two-dimensional a r r a y  along in  t 

impulse response is k(A), and 4)  convolving the new two-dimensional a r r a y  

by a f i l ter  whose 
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along the w -axis with the function G(w) . 
the bes t  es t imate  of the spec t ra l  density. 

The resu l t  will  then be K,, (e,&) 

The second approach to  the computation is  a variation of the 

f irst  and makes use of Equation 64 . The s teps  involve 1) computing 

e,, (f, r )  f r o m  (57) for the available data,  2)  multiplying by the "window" 

function y (? ) ,  3 )  fi l tering the resulting two-dimensional a r r a y  in  the 

t -variable by a f i l ter  whose impulse response is A ( A ) ,  and 4) Four ie r  

t ransforming the result ing a r r a y  with respec t  to ?' . 
(Equation 64 ), and s tep 4 yields X,,(f ,w)  (Equation 63 ).  

Step 3 yields X,, fi, 

The third approach allows a d i rec t  spec t ra l  computation. It is 

F igure  accomplished by dealing individually with each given pair of signals.  

9 is a block d iagram of the computational configuration. F i r s t  the signal 

(f) is passed through two resonant f i l t e rs ;  then the outputs of these 

f i l t e rs  a r e  multiplied by 

in r e a l  and imaginary par ts  of the component spec t ra ,  ,X,z(f,d) . 
the operation for each signal p a i r  up to P , the optimal spec t ra l  es t imate  

is obtained 

r ;  ( t ) .  Each product is then fi l tered again resul t ing 

By repeating 

Although all th ree  methods a r e  mathematically equivalent and 

will  yield the same answer if  properly executed, each one offers cer ta in  

advantages. 

on a modern full-size digital computer. 

a t t ract ive for the la rge  digital computer installation because the method is 

efficient, but requi res  a good deal of memory .  The third method, on the 

other hand, appears  best  suited for  the hybrid or  small digital computer .  

This method is probably not a s  efficient as the second, but i t  a l so  does not 

requi re  a grea t  deal  of memory .  The third method allows the value of the 

spec t rum to be  read  out individually for each setting of u 

The f i r s t  two methods a r e  probably bes t  suited for computation 

The second method is par t icular ly  

. 
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F. CONCLUDING REMARKS IN REGARD TO 
NONSTATIONAR Y SPECTRUM ANALYSIS 

A number of topics regarding this nonreal-t ime nonstationary 

spec t rum analysis theory remain to be investigated. 

scope of the present  study, i t  has been economically impossible to c a r r y  this 

spec t rum analysis approach beyond the basic  theoret ical  derivation described 

in this  repor t .  However, a s  can  be seen f r o m  the complexity of this theoret-  

i ca l  derivation, it represents  an  important advancement in the field of non- 

stationary data pr oc e s s ing . 

Because of the l imited 

Among the topics remaining to be investigated a r e  the following. 

First, experience must  be gained with the choice of the various t e s t  functions 

These parameters  must  be chosen in  a way which matches the spec t rum 

analyzer to  the data being analyzed. 

chosen with the s implest  possible fo rms  in order  that  complexity in the 

digital computations may be  minimized. Second, numerical  examples of 

the optimal f i l t e rs  (109) and (110) should be computed. 

objective is to  gain insight and experience with these f i l t e rs .  Third,  the 

nonstationary spectrum analyzer theory must  be experimentally verified.  

With a derivation as complex as the one described in this repor t ,  experi-  

mental  verification is required a s  a check on the theory and to  make s u r e  

that nothing has been overlooked. 

in a digital program and applied to typical nonstationary data. 

is to  insure that the approach yields meaningful resu l t s  when applied. 

However, the t e s t  functions should be 

Here again, the 

Finally,  the theory should be implemented 

The objective 
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V .  RECOMMENDATIONS 

In this section, s eve ra l  a reas  a r e  recommended for  future investi- 

gation. They have been chosen because their  successful  completion will 

allow the Computation Laboratory 's  goal of workable programs for non- 

s ta t ionary processing to be realized. 

1. P e r f o r m  an experimental verification of the nonreal-t ime 

nons tationar y s pec tr a1 analy s is the or  y . 
Because of the limited scope of the present  r e s e a r c h  effort, 

experimental  verification of the new nonstationary spec t ra l  analysis theory 

could not be undertaken. The theory must  be ver i f ied and refined before it 

i s  applied. 

progression of the investigation. 

This s tep should be considered a s  essent ia l  t o  the order ly  

2. Develop a digital computer program f o r  nonreal-t ime 

nonstationary spec t rum analysis and refine the present  digital p rogram for 

nonreal-t ime nonstationary correlation analysis .  

Either following the experimental verification of the non- 

s ta t ionary spec t ra l  analysis theory o r  concurrent with i t ,  a digital program 

mus t  be  developed for performing spec t ra l  analyses .  Here  again, since the 

ult imate objective is computation using the digital computer,  this step must  

be considered a s  essent ia l .  Moreover, although a digital p rogram now 

exis t s  for  performing nonreal-time nonstationary correlat ion analyses ,  this 

p rogram should be refined. 

mental  verification of the correlation theory.  

should b e  developed. 

The original purpose of the program was experi-  

Thus,  a m o r e  general  p rogram 

If sufficient funding is available, then d iscre te  nonstationary 

correlat ion and spec t ra l  theories  fo r  nonreal-t ime analysis should be  

developed. 

s a r y  to approximate digitally the continuous f i l t e r s  required in the presently 

developed theories .  

Implementation of these d iscre te  theories  would make i t  unneces - 
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3 .  Apply the digital programs for  nonreal-t ime nonstationary 

g e c t r u m  and correlation analysis to nons tationary data that the Computation 

Laboratory is asked to analyze. 

The nonstationary theories have been developed so a s  to  be  

flexible and widely applicable. Accordingly, pa rame te r s  must  be determined 

experimentally in each application. 

optimum choice of parameters  for the data encountered by  the Computation 

Laboratory and to a s s u r e  that the programs work satisfactorily.  This s tep 

should b e  considered as essent ia l ,  because it t i es  the foregoing theoret ical  

r e su l t s  to the required application. 

The intent would be  to determine the 

4. Improve the efficiency of the digital programs for non- 

s ta t ionary analysis.  

Unlike stationary analysis,  nonstationary analysis introduces a 

second dimension. Consequently, computation t imes for nonstationar y 

analysis  can be expected to be greater  than they a r e  for s ta t ionary analysis .  

Methods can be  developed which improve the efficiency of nonstationary 

processing.  

wil l  be  important to develop methods for improving their efficiency. 

If the original nonstationary programs a r e  costly to  run,  i t  

5. Incorporate the digital p rograms for nonstationary data 

process ing  into the Computation Laboratory's  p rogram bat tery.  

Certain problems will be encountered in adapting the final 

digital p rogram to the bat tery.  

tation Laboratory is different f rom that used at CAL. 

interrogating the user  of the nonstationary program might be  developed. 

The idea is to  have the user  supply a few constants regarding his data that 

will  allow "tailoring" of the nonstationary programs to the data.  Alterna- 

t ively,  it might be  possible to  perform a prel iminary analysis on the data 

to  allow automatic determination of the analyzer parameters .  

The plotting equipment used at  the Compu- 

Also,  a method for  
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