@ https://ntrs.nasa.gov/search.jsp?R=19670023933 2020-03-12T11:12:39+00:00Z

CORNELL AERONAUTICAL LABORATORY, INC.
BUFFALO, NEW YORK 14221

STUDY OF
NONSTATIONARY RANDOM PROCESS THEORY

By:

WALTER W. WIERWILLE AND JAMES R. KNIGHT

CONTRACT NO. NAS 8-113u6

CAL NO, XM-1970-8-3

PROJECT ETUDE IIT

DISTRIBUTION OF TH{S REPORT IS PROVIDED IN THE INTEREST OF
INFORMATION EXCHANGE. RESPONSIBILITY FOR THE CONTENTS
RESIDES IN THE AUTHOR OR ORGANIZATION THAT PREPARED IT.

PREPARED FOR:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
MARSHALL SPACE FLIGHT CENTER
HUNTSVILLE, ALABAMA

P - -

APPROVED BY: MZZ

W.C. Schultz, Assistant Head

Avionics Department




ACKNOWLEDGMENTS

The research reported herein was supported in its entirety by
the National Aeronautics and Space Administration, Marshall Space Flight
Center, Huntsville, Alabama. This report covers work performed from

July 1, 1966 through April 30, 1967 under contract NAS8-11346.

Mr. Jack Jones, of the Computation Laboratory, was the contract
technical monitor. The authors of this report are grateful to Mr. Jones

for his role in the development of this approach to nonstationary statistical

processing.

The research reported was performed by the authors, who are
members of the Avionics Department of CAL. The authors would like to

thank Dr. W, C. Schultz and Mr. John J. Earshen of the Avionics Depart-

ment for their guidance in this project.

ii



—dim

ABSTRACT

This report deals with methods for analyzing nonstationary proces-
ses in nonreal-time (computer-time) applications. In many cases immediate
read-out of a nonstationary statistical analysis is not required, and therefore
more accurate off-line analysis may be performed. A theory for non-
real-time correlation analysis and a theory for nonreal-time spectrum
analysis are presented. These theories do not require that the assumptions
of stationarity and ergodicity be made or even approximated. Instead, the
theories are based on approximation of the expectation definition of the
correlation function or its Fourier transform. Accordingly, correlation
functions and spectra containing running-time axes may be postulated

legitimately.

The theories make use of test functions for optimization of the
analyzer configurations. Test functions are used in the optimization
processes to avoid the need for precise a priori knowledge of the non-

stationary correlation function or spectrum being estimated.

Finally, an experimental verification of the correlation theory is
presented. Digital programs and plotting routines were used to obtain
nonstationary correlation function estimates for data with known correlation
functions, thereby making possible an analysis of estimation errors. In
addition, a nonstationary correlation function estimate was obtained for
flexible booster vibration data. This analysis shows the feasibility of the

nonstationary theory.
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I INTRODUCTION

Of great importance in the design of aerospace equipment is the
problem of statistically analyzing signals whose sources of generation have
time-varying parameters. Nonstationary signals are prevalent in aero=-
space engineering because of the varying environment through which a
launch vehicle must travel, varying parameters within the vehicle, or
because tests must be transient in nature. Moreover, communications
and telemetering systems are subject to time-varying medium disturbances,

the result of which is nonstationary signal reception.

In addition to aerospace engineering, nonstationary signals are
prevalent in other branches of science and technology. Doppler weather
radar signals, speech waveforms, and seismic waveforms, are important
examples. Thus, nonstationary analysis methods developed for aerospace
application are also widely applicable in other branches of science and

technology.

Because of the prevalence of nonstationary signals, it is important
that methods be developed for analyzing and understanding them. Under
support of the National Aeronautics and Space Administration?< a theory
real-time correlation analysis of nonstationary signals was evolved, 2,3
which placed the analysis of nonstationary signals on a firm mathematical
foundation. The real-time correlation theory (in a discrete version) was

subsequently implemented on the digital computer.

During the past year under MSFC contract NAS8-11346, nonstation-
ary signal analysis was carried further so that maximum advantage could
be taken of the capabilities of the high-speed digital computer. The real-
time correlation theory was extended to cover the nonreal-time or off-line
(computer-time) case. This correlation theory, which is optimal in a
continuous, nonreal-time sense, is fully described in Chapter II of this

report.

*Work on nonstationary signal processing has been supported by
NASA under special tasks of Contracts NAS8-11346 (Marshall Space Flight
Center) and NAS1-3485 (Langley Research Center).
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Because of the complexity of the nonreal-time nonstationary cor-
relation theory, an experimental study which verifies the theory was
performed. This experimental study involved four aspects: 1) computation
of numerical examples of optimal filters for the correlation theory, 2) de-
velopment of running digital computer programs and plotting subroutines
which implement the nonreal-time nonstationary correlation theory,

3) experimental testing of the correlation theory using known test functions,
and 4) computation of the nonstationary correlation function (and nonstation-
ary spectrum by a suitable transform) for flexible booster data furnished

by MSFC. The results of the experimental study are described in Chapter
III of this report.

While the nonreal-time nonstationary correlation theory was being
developed, a parallel effort was made under NAS8-11346 to develop a
theory of direct spectrum analysis of nonstationary signals. Here, the
idea was to obtain optimal estimates of nonstationary spectral densities,
rather than transform optimal estimates of nonstationary correlation
functions. This nonstationary spectral theory is described in Chapter IV.
The reader is cautioned that the results of Chapter IV are preliminary,
since limited scope of effort precluded an experimental study of the non-

stationary spectral theory.

Finally, in Chapter V of this report recommendations are made
for futher work on the nonstationary theories and their application to

MSFC Computation Laboratory problems.



II. NONREAL-TIME (OFF-LINE) CORRELATION ANALYSIS
OF NONSTATIONARY SIGNALS

A, BACKGROUND

For many years engineers and scientists have found it
advantageous to characterize randomly fluctuating phenomena by means of
a single highly descriptive function. The correlation function and the power
spectral density are most often used, since each contains a great deal of
information. These functions provide the vital link between the raw data
of an experiment on the one hand and the design or redesign of a system on
the other. In addition, they are the required information for optimal linear
least squares separation of signals from unwanted noise, and thus are im-

portant to communications engineering.

Correlation functions and power spectral densities are rather
elusive when being measured. Extreme care must be taken to insure that
the measurement method itself does not introduce artifacts and large errors.
In addition, fundamental and economic limitations on data gathering make it
necessary to deal with data records of finite length and number, resulting in
additional sources of error. Consequently, the analysis of acoustical,
vibrational, or electrical signals, requires great care to achieve full limiting
accuracy for the data available. The problem of correlation and spectral
accuracy is well recognized, and has been the subject of intensive study by

. . . . . 1
communications engineers and other investigators for many years.

Although the problem associated with accuracy has been care-
fully examined, there is a second type of problem that has not received the
same degree of attention. This second problem results from the assumption
made in conventional correlation and spectrum analysis that the data or
waveforms being analyzed are generated by a stationary process. A station-
ary process is one in which any probability statement about the waveform
values at specified times remains true if all the times are uniformly shifted
by any given constant amount. Physical interpretation of this definition
implies that a stationary process is one in which the underlying random

waveform generating mechanism does not change with time.



Unfortunately, very few processes can be totally justified as
stationary, and therefore it has often been necessary to resort to approxi-
mation of the stationary case in some way if a correlation or spectral
analysis is to be performed. The assumption that a signal is generated
by a stationary process is restrictive. Conventional stationary estimation
theory does not apply adequately to many important waveforms and random
signals in which the parameters generating the process do vary with time,

or in other words, are nonstationary.

This section of the report presents and justifies a method of
off-line correlation function estimation for signals generated by a non-
stationary process. The theory underlying the method is postulated in a
way which makes the assumption of stationarity unnecessary. Although
errors in the correlation function estimation procedure will result, these

errors are minimized according to a test function criterion.

A recent technical paper discussed a theory and method for
correlating, in real-time, signals that are generated by nonstationary
processes.2 The theory was developed for on-line, physically realizable
analysis and is limited to one-dimensional filtering operations. Thus, the
method can be applied using standard analog or hybrid computer techniques.
Except for the pure delay in the correlator, no data storage is required.

In this section of the report an off-line theory is presented which is a

modification and extension of the real-time theory of reference [2].

There are many practical nonstationary data processing
problems where immediate read-out of the correlation function is not
required. In these problems a period of time may elapse between gener-
ation of the signals and computation of the correlation function. More data
can then be made available for processing because, at any given point in
running time, both past and future data may be used for the correlation
analysis. As a result of the greater amount of data, the errors involved
in nonstationary correlation analysis may be made smaller in the nonreal-

time (off-line) case.



Other advantages are associated with the nonreal-time approach
to correlation analysis. First, correlation functions may be computed for
both positive and negative shifts between signal pairs; that is, the correlation
function may be computed as a two-sided function of the delay variable T
Also, since realizability conditions need not be specified for the filters in
the correlator, rather general correlator derivations can be handled without
serious complication. Finally, and perhaps the greatest advantage of all,
the high-speed digital computer can be used for computation of nonreal-time

correlation functions.

Although it is possible to develop more general and more
sophisticated approaches than that presented here, it is probable that
these would not be practical because of excess computation time or storage.
The nonreal-time approach presented here limits the operations on the data
to one-dimensional operations; that is, filtering operations contain only one
independent variable. By so-limiting the approach, spatial filtering of
large data arrays is eliminated. Storage and computation times can thereby
generally be brought within practical bounds. The philosophy of approach
used herein is similar to that of references [2] and [3]. Other philosophies

can be developed, some of which are presented in references [4] through[13].

B. DEFINITIONS AND PROBLEM STATEMENT

To estimate the correlation function of a nonstationary process
it is first necessary to review the definition of the correlation function and
to show that certain concepts associated with stationary processes may not
be used when dealing with nonstationary processes. Let {nz', (z‘);-ﬂz’z (f)};;y:/,g L P
represent a sequence of pairs of real signals that have been generated by
the same nonstationary random process. The independent variable ¢
usually represents running time, but can also represent a distance measure
in some cases. This sequence represents the given information about the
process from which the correlation function is to be estimated. If F=7
then a single pair of waveforms is available; if F=2 , then two pairs are
available, and so on. If autocorrelation analysis is to be performed, the
theory can be applied by letting £, (¢) =, £, (¢) for each value of »
up to P



The crosscorrelation function, whether the process is stationary
or nonstationary, is defined as the expected value of the lagged product of
nts (t) and , 7, (¢) :

b, (t,T) = E6,(2) i, (¢-2)]

where 7 1is an arbitrary integer and 7 represents a time translation
between the two signa.lsi:< Computation of this expectation for the general
case will require knowledge of the joint probability density function of the
signals »t,(¢) and ‘, (¢-7) However, if the process may be assumed
stationary, then ¢ _ (7 2-) remains invariant regardless of the value of #
and may therefore be written as a function of 7 only. Further, if the
process possesses the additional property of ergodicity, then the correlation
function may be computed from a suitably long time average of the lagged
product ,¢,(¢) ,f, (¢ —7) without requiring the use of the other member
pairs of the ensemble. Conventional correlation and spectral estimation is
based upon the assumptions of stationarity and ergodicity, so that only one

pair of data waveforms need be obtained for analysis.

If the process is nonstationary, the estimation procedure can-
not be based on the theory associated with stationary and ergodic processes.
Instead, the expectation definition of the correlation function must be con-
sidered as the starting point. Beginning with the expected value definition
given above it is possible to show, using the law of large numbers, that in
most cases <, (¢ 7) would be equal to the limiting sample mean of lagged

signal product pairs. Thus,

N . .
7572(2‘)7')=/&'m Z nty (2), 0, (¢-7) o

N+ pn=q1 N

“In this definition the mean values of , 7, (¢) and , 7, () are not
removed. For a zero mean process, this definition corresponds to the
conventional definition.
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when the right hand side of this equation exists. Note that #,(t.7) in
this equation as well as in the expectation definition equation possesses two
independent variables # and 7° . This correlation function is therefore
capable of exhibiting changes as a function of time, ¢ . In contrast, a
correlation function equation based on stationary and ergodic assumptions
precludes the capability of exhibiting changes in time, because the process is

postulated as invariant under time translations.

Equation 2 cannot be used directly for correlation analysis of
nonstationary signals, because it requires access to the total ensemble of
signal pairs. However, &, (¢,7) may be considered as an ideal correlation
function that is to be approximated by operating on the given signal pair
sequence {n £, (¢); y 2 (f)} ; n=1,2, ..., P. This problem of approxi-
mating &, (¢, ) with least error, by processing the given £  pairs of

signals is considered in this report as the fundamental objective of non-

stationary correlation analysis.

A solution to this problem may be obtained if it is carefully
specified and limited. Define 6, (¢, ) as the sample mean of the given

signal lagged products:

P
. o
6, (£7) =) ""(t)’};z( iz (3)
n=1

where again T represents the delay or displacement variable. Further,

define a noise-like difference as

N, (6, T)=8,(tv)— ¢, (¢7)

where 7,, (t,T) is assumed extraneous to the correlation function

b, (¢, T). In other words, 4, (¢, 7) is composed of two components:
a desired component & (7, 7) and an undesired component ,, (¢ 7).

The objective will be to operate on the computable function 6,, (¥ ) 1ina
way which suppresses the 7, (¥,7) component and causes least distortion

of the b,, (¢, T) component.



It is necessary to specify a class of admissible operations on
the function 6, (¢ 7) that maybe used in approximating &, (¥, z). The
class should be chosen so that accurate approximation is possible, yet it
should not be chosen so general as to make the computations difficult. Let
the output of the correlation operation (or analyzer) be defined as ¥, (¢ ).
Then choose the class of operations such that they may be described as two

S

one-dimensional filtering operations on 6, (t,7) ; that is, let

Y, (¢, 7T) = /;»(ar)/(v)czz (t-a, 7r7) AV dx (5)

where #4(x) and £(7) are impulse response functions that are to be specified
by the subsequent optimization process. The functions h(x) and L(7)

are to be chosen ina waythat minimizes some measure of the difference
between ¢, (7, T) and ¥,, (¢ 7).

Equation 5 describing the class of admissible operations on
6, (¢, 7) has not been chosen completely arbitrarily. Advantages are asso-
ciated with this particular choice of a class. These will be discussed at the
end of section II, wherein it will be shown that alternate methods of compu-

tation can be developed for performing operations described by equation 5.

It is legitimate to ask why a filtering operation on the sample
mean of the given signal lagged products should improve the estimate of the
correlation function. One might question the validity of performing any type
of filtering on 6, (¢,7). There is a twofold reason through which improve-
ment can be obtained by filtering. On the one hand, the difference function

7, (¢, 7)) is unwanted, and its amplitude can be reduced by the proper
form of filtering. On the other hand, ensemble averaging will ordinarily
have a tendency to smooth, and thus ¢,, (¢, T) is a smoother function
than 6, (¢, =) Filtering is capable of introducing smoothing in a way

that approximates ensemble averaging.

“When limits on integrals are deleted, they are to be taken as oo at
the upper limits and — oe  at the lower limits.



C. DEVELOPMENT OF A PERFORMANCE MEASURE

As discussed in references [2]and [3], three sources of error
should be taken into account in the correlation analysis of nonstationary
signals. The problem at this point becomes one of mathematical specification
of these three sources of error in terms of #A(x) and Z£(7) and the
subsequent selection of A(«) and L(7)
mized. Substitution of (4) into (5) yields

such that the errors are mini-

ﬂz(f,T)‘/ﬁ(x)!((}')?@z(f—x, VrT) AV Adx
+/ A@) (V) 7, (t-a, Vro)LVdx

which makes possible the examination of the sources of error. The first

(6)

term on the right shows that the filtering operation will produce distortion

of the correlation function. Distortion will exist as a function of 7, because
of the filtering operation represented by [ (’)’) Distortion will also exist as
a function of ¥ because of the operation represented by #4 (x). In addition,
examination of the second term on the right shows that the entire quantity
must be considered as error, since it represents the filtering of an extraneous

or unwanted component of the function 6, (¢t,7) . Thus, the three sources

of error may be classified arbitrarily as:

1. distortion of the correlation function as a function of #,

2. distortion of the correlation function as a function

of T, and
3. noise or instability resulting from the extraneous component.
Measures of Distortion in ¢ and 77

In order that the distortion of the correlation function in # may
be minimized, a test-type correlation function is chosen. This test function
should be representative (in the ¢ dimension) of those being detected. It is
postulated that precise knowledge of the correlation function is unavailable,

since that type of knowledge would preclude the need for performing a cor-
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relation analysis. Test-function testing of the correlation operation (or

analyzer) affords a good, workable compromise between total absence and

total presence of knowledge regarding the process.

In his review of the real-time nonstationary correlation theory
of reference [2] Larrowe pointed out the disadvantage that the test functions
must be selected before the optimization procedure may be perforrned.14
In contrast, this nonreal-time theory does not require selection of specific
test-functions in the derivation, because absence of physical realizability
conditions simplifies the analysis somewhat. In this theory a general form
may be carried through the analysis, allowing the test function to be chosen

in each particular application. Thus, for testing distortion in ¢ let
#,(t,7)= A, g () for all - (7)

where g(f) is the test function for the ¢ -axis, and A, is an arbitrary
positive constant determining the weighting of the test function. The function
g (¢) is made uniform in 7 in order that separation of distortion in #

and distortion in 7 may be accomplished.

It is important to assure that biases in the input data are cor-
rectly reflected in the output of the correlator. This condition can be
attained approximately if the class of test functions is limited to those that
have the property

t
7(1‘) !/g,(a')c{o* (8)
tw

where ¢, ($) is such that Q, (0)+ 0 .>‘< Equation 8 may be written in the

form:

7(f)=/z,(a')a_,(f—r)o(¢ (9)

“In this report, functions of S written with upper-case letters are
Fourier transforms of their corresponding lower-case counterparts.

For example, &,(5) =/¢,(¢) o

10



where «_, (¢) is the unit step function. Then the Fourier transform of (9)

yields

Q,(s)
Q(s) = —L——S (10)

an equation that will be used later,

A measure of the distortion in #  for the chosen test cor-
relation function is easily obtained by squaring and integrating the difference
between the output of correlation analyzer and the test function itself. Thus,

let the measure of distortion be defined as

L = 1:/[20‘)—///w(x)l(’}’)g(tm)d?dx At (11)

which will serve to assess the first source of error in nonstationary correl-

ation analysis.

Distortion in 7° may be handled in an analogous manner.

For testing, let
#. (¢,7) = A r(T) forall ¢, (12)

where 7 (7)) 1is the test function and A, is another arbitrary positive
weighting constant. The test function is made uniform in ¢ (which is
equivalent to being stationary), in order that separation of this source of

distortion may be attained.

Again, the test function class is further restricted to insure
correct bias indication by the correlation analyzer. Let

7

r(7) E/f; (r)d o (13)
where A&,(S5) is such that 4&,(0)#0. Then,
& (s) = L&lZ) (14)
11



The distortion measure in 7 is then defined similarly as

= 2.:/ [r(?')—V/‘ﬁ(oc)j(’}’)r’(f)’f-?‘)o(?’dx}d?‘ (15)

which makes possible the quantitative assessment of the second source of

error.

Error Measure for the Extraneous Component

As stated earlier, an extraneous or noise-like component will
be present in the output of the correlation analyzer, which is represented

mathematically by the second term on the right side of (6). This term must

be made as small as possible, because its entire contribution is extraneous
by definition of 7, (#,7) in (4). To properly assess this third source of

error, a test function and performance measure must be selected.

Consider that the function ¢, (#,7) and the function 6, (¢, 7)

can be visualized as two-~dimensional surfaces or arrays. The amount by

which they differ is again a two-dimensional surface, 7,, (t, ) . Thus,

7, (t,7) is a two-dimensional noise waveform. Suppose that the noise
test function is chosen so as to be of infinite length in both # and 7  and
stationary in both # and 7 . Further assume that an average over ¢ and

an average over 7 of the lagged product yields

Mg (2.7) 71y (t=x, T+ V)= @y (x) b, (7) (16)

where the double bar indicates ¢ and © averaging. Note that «,(x) and

b, (77) must always be even functions if 7, (¢t,7) is stationary and ergodic

inboth ¢ and 7 . Let the noise test function be specified as unbiased as a
function of both ¢ and 7 , so that a solution to the problem may be obtained

which allows the correlator to correctly indicate biases in the data.

“Correct readout of the biases is considered a desirable property of
the correlator. Therefore, the noise component test function should not
contain a bias, since this would cause minimization of a desired function.

12



1f, for the noise test function described above, the correlation
analyzer output is squared and averaged over # and ¢ , a total measure

of the instability or extraneous noise response will be obtained. Let

A = {/ﬁ(x)/(’)’)ﬂ,z(t‘—x ,’)’f’z')a(’)’da] (17)

W&’)A&Z)/(Z)/(Z) ”’Z(f—w' % *7) 72 (Z““z-/}; +7) //); /7; /a, /xz

(18)

=/ﬁ(¢/)ﬁ(“2) 2n (“z ‘“1)4“/ A, '\/\‘/‘[(l};)/(%) é,,(’;’;—?,’)d?;dg (19)

Equation 19 describes the noise response or instability in a

oo
E<d

simple measure. The functions a, (x) and 4,,("7) can be considered as
time-averaging correlation functions of the extraneous component >, (% 7°)
along each of its two independent variables. An investigator may choose these
two correlation functions to be representative of » (7,2-) in each specific

case.

The Total Performance Measure

A total assessment of the errors involved in nonstationary non-
real-time correlation analysis can be obtained by summing the performance
measures representing the three sources of error. Let the total performance

measure be defined as:
@=F + A v B (205’

By changing the values of the arbitrary parameters A, and A, , the various

sources of error may be traded against one another.

"Note that F, does not contain an arbitrary positive weighting
constant as do F. and A~ . The solution can always be normalized so
that any constant association with £, may be removed. Therefore, such
a constant is superfluous.

13



The point has been made that the correlation analyzer must
indicate at its output the correct value of the biases in the input data. One
way of insuring approximately correct bias reading is to constrain the zero
frequency gains of the two filtering operations represented by A(x) and L(7)
to be equal to unity. Therefore, the following two constraint conditions are

to be incorporated in the solution for minimum correlator error:

/ﬁ(m)dx-—/=0 (21)

/}(7)4’7—/=0 (22)

The problem then becomes one of minimizing () subject to satisfaction of

the constraints specified by (21) and (22).

It should be realized that the development of a performance

measure is to a great extent arbitrary. Many different approaches might have

been taken. The one presented here has been selected because it is relatively
general, it leads to a precise optimal solution (in the sense of the chosen per-
formance measure), and it correctly reflects the sources of error and desired
constraints. Of major importance here are the facts that this approach ex-
hibits the fundamental errors of nonstationary correlation analysis and that

the errors are minimized to the extent possible.

D. CORRELATION ANALYZER DETERMINATION

The minimization of the performance measure is accomplished
by determining the extremals of the performance measure with Lagrange
multiplier side conditions. Two variational equations will be obtained because

both A (x)and £(7) must be determined. These equations are

xj/ c;(f)—/[/(’r)wq(fr)]/yfh (@ﬂp@h} Lt

+).:/ rt) - A(ﬂ)o{(x\)/[l(/y)*{’?(’)’)] f(’)’*r)”(f)'}zo{?' (23)

(equation continued on next page)

L

14



i‘//‘%(ﬂa) hlory) 2 (2, — o5,) A, L, M/(W)* é”f(/)ﬁ]{/@)*fff(?}ﬂ

xby (%=N)ANAY, (23)

cont.
+ A, /fz(x)dx—/} + ZZI/[/(’7)+677(’7)}A’7—/}

and a similar equation with A(x) subjected to a variation instead of /(7).
In these equations, A, and A, are Lagrange multipliers to be deter-

mined in such a way that the constraint conditions (21) and (22) are satisfied.

The extremals of (23) are obtained by performing the following

operation on [, :

3I§

¢ =0

E=0

(24)

Evaluating (24) and interchanging orders of integration” yields
/ - 22:/1%”—/;(7%@; ch ()] Ay CE) a2
—zay[rm-y(o) ,l(?;)r(rf’);)o(’),’] H(0)r(v+7)dT
) zufz (7Yoo (7= %) L7 + ﬂzj 2N dY =0

where

H(o)=H(S)

. =/;1(“)d(ac) (26)

A, (¢) E/ﬁ(x)a(f—x)ﬂ’x (27)

>“Interchange of orders of integration, when performed as indicated
in ( 25), can be easily justified for most sets of practical test functions.

15



Application of the fundamental theorem of the calculus of variations allows

the extremal condition to be written as:

—Af/[ﬂf) —/:2(’7;)0(7, . ﬁ,(f)] A, (t)dt
—Azz./-[r(T)—H(o) ,Z(’};)r(?'r?;)o(’);]/v’(o)"(?'r’)’)de'

tH [ LCY) by (V=0,)d Y, + £ 2, =0 (29)

The second and third terms of this equation are functions of 7 , whereas the
first and fourth terms are not functions of ¥ . Suppose A, is chosen

such that

L2, - a:/[q(t)-//(’r,)w,-ﬁ, (©)] 4, ()¢ (30)

Then, if the resulting extremal equation satisfies the constraint condition,
the equation is a solution to the problem. Substituting (30) into (29), the

extremal equation becomes

_ag/[rm—fm £C7) 7 (2o M7 H) r(e e 7) 4o

(31)
A0 by (7=0) % =0

This integral equation may be solved by Fourier transforming the individual

terms. The resulting equation is (making use of (14) ):

(32)

- 2; H(0) '?'5(5)[:'??5) —-H(0) ’?_'{;5) L(S)J +*H B, (5)L(S)=0

Rearrangement yields

/1 H()/e(s) /?(5)

L(S) =
H, 8, (5)+ A2 H(0) »?(5) /? (35) (33)

16



In order that a check might be made to insure that the constraint condition

is satisfied, the limit as §—= ¢ of (32) is taken. The result is
L(O)H() = 1 (34)

because for unbiased noise test functions ‘;.lf,"; 8, ($) is finite. Thus, the

constraint conditions can be satisfied, since (34) admits the conditions

L(0o) = and 4(v)=7. The final expression for [/ (5) becomes *
( A\ RB(5) R(-5)
A, > -J
L(S) = 2 - (35)
B,(5) B,(-5) ( R(S) 0_(55)
where, since B,, (5) is even in § , it may be written as:
B,(s) = 8,(s) 8, (-5) (36)

The solution for 4 (x) is obtained in a similar fashion, however,

signs within the derivation are different. Briefly,

_A:/{z(z‘)—é(oy/;fm)?(z‘-oc,)dac,] L(o)f;(f-rx)df*lz/;f“')“n(“'“r)a{“r (37)

=0
-3l 10| 2L 1 one) E2N) LED s p, sy uer <0 sn)
( A 4 ©) ¢ ()
#) = A (S)A,(-5) + </1, o,(-fJ e, (-55) (29)
where Ay (5)=A,(5)A,(-5) - (40)

“Proof that L(5) as given in (35) produces minimum correlator error
(according to the performance measure with constraints incorporated) may
be obtained in a straightforward manner. The extremal condition (25) is
substituted into the expression for [y — ®. Then, the resulting expression
is shown to be greater than or equal to zero for all ¢ and 77(’)’)
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Equations 35 and 39 specify that the transfer functions of the two optimum

filters to be used in the correlation operation described in (5).

The theory, as described in this report, has been derived in a
relatively general fashion, to provide flexibility in its application. First,
the number of member signal pairs has not been specified, and thus,
correlation of one pair or several pairs is possible. Also, since the test
functions have not been specified, these functions may be chosen in accordance
with the problem at hand. Finally, since the theory has been developed for

crosscorrelation, autocorrelation follows as a special case without modification.

It will be shown that there are two different ways in which the
correlation operation of (5) may be implemented. First, the operation may be
implemented by direct filtering of the array represented by 6,(# 7). The

steps to the computation are the following:

1. Compute the two-dimensional array representing &, (¢,7)
by adding and storing the individual lagged products,
il () 6 (6-7), 4, () L6, (¢-T), ..., 54, (2) pt; (£ -7).

2. Filter the array in each dimension. First, for each
setting of ¢ , filter the 7 dimension with a filter whose
impulse response is £ (7). Then in the resulting two-
dimensional array, filter the ¢ dimension for each
setting of T with a filter whose impulse response is
hix) . The resulting array is the output of the

correlation operation.

The second way in which the operation may be performed is a
result of the network properties of equation 5. Figure 1l shows a network

configuration whose output for inputs _ 4, (¢) and ¢, (¢) is:
oY (8.7) = /;z(ac)/(v)”z; (t-x) 0o (t-x~7-7)dV A = (41)

Upon performing an average over the /A pairs of signals, the resulting

equation is (5). Thus, the network configuration may be used to compute

18



"AYO3FHL NOILYIIYY0D AYVNOILVLSNON IWIL-TVIYNON JHL
ONI1INIWITdWI 404 a3SN 39 AYW LVHL NOILYHNDIANOD NYOMLIN | 94nbiyg

()7 = WyodsNviL
;wmunow”.ﬂ (1) = 3SN0dS3¥ 3SMNdNI fe0 (3)Cy W
¥317d1 110N ‘¥31714 ¥vaNI
o W o (S)H = WaodSNY YL -
(23)814“=(3)% 0—f ;:.._um_wzon_mux EIROELT] o(y)ly¥
¥31714 ¥VINIT '

AN MR & _———— M B AN & Gy BN R O O N B N e Eam e
‘ _ B




each ,,5//,?_ (t. 7). Averaging over the P output arrays then

produces the correlation operation specified by equation 5.

The first approach requires more storage, but is probably
more efficient. It is generally suitable for modern high-speed digital com-
puters. The second approach allows the computation of correlation functions
for a fixed 7  without operating on neighboring values of % . Thus, one
line of ¢ (with 7 fixed) may be processed and printed out before moving on
to the next fixed value of 7= . The advantage of this second approach is that
less storage is required. It is probably more suitable for smaller digital or

hybrid computers.
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III. EXPERIMENTAL STUDY OF NONREAL-TIME

CORRELATION ANALYSIS

A digital computer program was developed for performing nonreal-
time nonstationary correlation analysis. The purpose of this program was
twofold: first, it was to be used for experimental verification of the foregoing
theory, and second, it was to be used to analyze a pilot run of NASA flexible
booster data. Isometric plotting subroutines were also developed in order
that the computer output might be displayed in graphical form. This section

describes the results of the experimental study.
A. ANALYZER TESTS

The first tests performed with the theory and program involved
the autocorrelation of an uncorrelated, nearly stationary noise waveform
and the crosscorrelation of two uncorrelated waveforms that were independent
of each other. For this test the Fourier transforms of the two filters were
chosen as optimum for K,(s), B8,(s5), @, (s) and 4 (s5) each equal

to unity. The filters themselves. were then of the forms

0.5 0.5
L(s) = 5 * 5 (42)
1t w000 T 27 . 1000
and
0.5 0.5
H() = 5 * — (43)
7+ — e
25 25

Figure 2 shows the computer plot of the steady-state analyzer output for the
autocorrelation case (and for positive 7 only). Whereas, the true correla-
tion function would exhibit an impulse "ridge'' for =0 and zero value
elsewhere, the correlator output only approximates these conditions. For
large values of 7 , the correlator output fluctuates about zero, thus exhibit-
ing the instability of nonstationary correlation analysis. For values of 7
near zero, positive correlation is exhibited; the correlation is spread about
T=0 instead of being bunched at 7 =o¢ . Thus, some distortion of the

true correlation function occurs along the 7 axis. Notwithstanding these
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shortcomings, it is rather clear that the correlator is operating as predicted
in theory, and that the output is very valuable in characterizing the signal

on which the correlator operated. It should be noted that the smoothing
times of the two filters, represented by L(5) and A4 (5) were chosen to

exhibit the sources of error involved in nonstationary analysis.

The crosscorrelation of uncorrelated noise produced a plot
similar to that of Figure 2, except that there was no rise in output level for
small values of 7. In other words, the correlator output for every value
of 70 fluctuated about zero. This result is as anticipated, since the true

correlation function is zero everywhere.

In another test, two signals were crosscotrelated whose true

crosscorrelation function was a stationary exponential:

%, € i T =zo (44)
F(t,7) =

For this test of the analyier B8,(5s), @,s5) and A4, (5) were again set

equal to unity, while &, (5) was made equal to the Fourier transform of (44):

7
5 (45)
7+

Zoo

R,(5) =

The analyzer filters were then given by

05 +065 x10735 0.5 —065x107°5
= +
L(s) 1 +71.55 x107°5 + 10752 7 —1. 55512025 + 107652 (46)
and
0. .
H(S) = __fT " __0_?_
7+ — /- — (47)

20 20

Figure 3 is a computer plot of the steady-state correlator
output for the exponential test (and for positive 7 only). Here, distortion

of the true correlation function occurs as anticipated. In addition, the usual
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instability exists as a result of finite smoothing time. It should be noted that
because of a change in amplitude scale the instability appears greater here
than in the uncorrelated noise test; actually the instability is smaller in the
exponential test. Again, the information obtained from the correlator would

be very useful in describing the relationship between the two input signals.

In the tests described thus far the smoothing represented by the
filter H(S) was made finite even though the true correlation functions were
nearly stationary. Of course, some instability results because of this finite
smoothing. The advantage of using finite smoothing is that changes in time
of the true correlation function may then be detected by the correlator. To
exhibit this ability to detect changes, a test was performed in which the true
correlation function undergoes an abrupt change in time. More specifically,
two signals were generated whose true crosscorrelation function is uniform

in 7 and undergoes a step change in ¢ :

£, ;5 ¢t < 016 sec.
#, (t.7) = (48)

2k, ; t = 0.76 sec.

In this test &, (S), B,(5), @ (s) and 4,(5) were all set equal to unity

once again. The filters used were

L(s) = 57 5 (49)
s -
7000 7000
and
a.5 0.5
H(S) = s 7 T 5 (50)
7+ — 7=
20 20

Figure 4 is a computer plot of the output of the correlator for
the abrupt step in ¢ test. It is seen that the correlator output smoothes
the abrupt change, but does gradually assume the new level. And, it is clear
that the uniform nature of the true correlation function along the 7" axis is
being detected. Because of the symmetry of the filters in the correlator, it

would be expected that the correlator's output at ¥ = 0.16 sec. should be
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midway in its change from the old to the new value of the true correlation
function. The plot shows that the correlator's output is late in rising to the
new value; an explanation is that the original noise source is not precisely
stationary or that the analyzer's instability causes errors in the output plot.
Again, it becomes clear that the correlator's output would be valuable in
characterizing the input signal pair. Additionally, the correlator is capable

of following changes in the statistics of the input signals.

The tests described above give strong indication that the non-
real-time correlation theory does perform as expected when implemented.
Important features of each true correlation function are detected by the

correlator, and the sources of error appear adequately taken into account.

B. APPLICATION TO BOOSTER DATA

In the analyzer tests described above, all of the input signals
were generated by the digital computer and were then used as inputs to the
correlator program. The primary signal source was a computer algorithm
for generation of approximately stationary and approximately uncorrelated
signals. It seemed, therefore, that some type of test on actual experimental
data ought to be performed. The Computation Liaboratory of Marshall Space
Flight Center, NASA, made available several records of flexible booster
test vibration waveforms. From these, one was selected because of its

apparent nonstationarity. Figure 5 is a p