1,694 research outputs found

    Consumer preferences towards local food products in Austria and Portugal

    Get PDF
    Locally produced food has increasingly gained attention in recent years. Consumers are getting more and more conscious about their consumption behavior and often buy a product for reasons that relate to their priorities or perceptions, such as the environmental or economic impact. Although substantial literature on conventional and organic food is available, the topic of local food products is not well explored yet. Moreover, consumption behavior towards local food in Austria and Portugal and, subsequently, the cultural impact has not been analysed yet. Therefore, this study aims to explore consumer preferences towards local food products in both countries. In order to get a better understanding of consumer behavior towards locally produced food, both primary and secondary research was conducted. For this purpose, a survey among 198 people in Austria and Portugal was performed. The main findings of this paper indicate that consumers prefer local food to foreign products, with product attributes, environmental protection and economic welfare being the most important drivers. In addition, the study revealed that Austrian consumers have a higher preference and willingness-to-pay for local food products than Portuguese. Moreover, willingness-to-pay was not found to be sensitive to information cues relating to the environment or the economy. A possible explanation for this result is that consumers are already aware of the environmental and economic benefits of local food.A produรงรฃo de alimentos localmente tem ganhado atenรงรฃo nos รบltimos anos. Os consumidores preocupam-se cada vez mais com os seus hรกbitos de consumo e muitas vezes adquirem um produto por razรตes relacionadas com as suas prioridades ou percepรงรตes, relativamente, por exemplo, ao impacto ambiental ou econรณmico que os produtos possam ter. Embora exista bastante literatura sobre alimentaรงรฃo convencional ou orgรขnica, o tema โ€œproduรงรฃo localโ€ ainda nรฃo estรก bem explorado. Alรฉm disso, os comportamentos em relaรงรฃo ร  temรกtica dos alimentos produzidos localmente na รustria e em Portugal e o seu impacto cultural ainda nรฃo foram analisados. Este estudo explora as preferรชncias dos consumidores em relaรงรฃo aos produtos localmente produzidos em ambos os paรญses. Para esse efeito, foi realizada uma revisรฃo da literatura relevante e um estudo quantitativo, que incluiu um inquรฉrito com 198 participantes, tanto austrรญacos como portugueses. As principais conclusรตes indicam que os consumidores preferem alimentos produzidos localmente, em detrimento dos produzidos no estrangeiro. Os factores mais importantes que determinam esta preferรชncia sรฃo as caracterรญsticas do produto, o impacto ambiental e o impacto econรณmico. O estudo revelou tambรฉm que os austrรญacos tรชm uma preferรชncia mais forte e estรฃo dispostos a pagar mais por produtos localmente produzidos do que os portugueses. Os consumidores de ambas as nacionalidades estรฃo jรก cientes dos benefรญcios ambientais e econรณmicos dos produtos locais, o que faz com que nรฃo haja grande sensibilidade da disposiรงรฃo a pagar a novas informaรงรตes relacionadas com o ambiente e com a economia

    ํฌ๊ท€ ์‹ ๊ฒฝ๊ทผ ์งˆํ™˜์˜ ์œ ์ „์ฒด, ์ „์‚ฌ์ฒด ํ†ตํ•ฉ ๋ถ„์„ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :์˜๊ณผ๋Œ€ํ•™ ์˜๊ณผํ•™๊ณผ,2019. 8. ์ตœ๋ฌด๋ฆผ.Whole exome sequencing (WES)์€ ๋น„์šฉ ๋ฐ ๋ฐ์ดํ„ฐ ์ฒ˜๋ฆฌ์˜ ์šฉ์ด์„ฑ์œผ๋กœ ์ธํ•˜์—ฌ ํฌ๊ท€์งˆํ™˜ ์ง„๋‹จ๋“ฑ์— ๋งค์šฐ ํšจ๊ณผ์ ์ธ ๋ฐฉ๋ฒ•์ด ๋˜์—ˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ variant of unknown significances (VUS)๋ฅผ ํ•ด์„ํ•˜๋Š” ์–ด๋ ค์›€๊ณผnon-coding ๋ณ€์ดํ˜•์„ ํ™•์ธํ•  ์ˆ˜ ์—†๋‹ค๋Š” ์  ๋“ฑ์˜ ์ด์œ ๋กœ WES ๊ธฐ๋ฐ˜์˜ ํฌ๊ท€์งˆํ™˜ ์ง„๋‹จ๋ฅ ์€ ๋Œ€๋ถ€๋ถ„ 50%๋ฅผ ๋„˜์ง€ ๋ชปํ•œ๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ํฌ๊ท€์งˆํ™˜ ์ง„๋‹จ์˜ ๋ณด์™„์ ์ธ ์ ‘๊ทผ๋ฒ•์œผ๋กœ ์ƒˆ๋กœ์ด ์ „์‚ฌ์ฒด ๋ถ„์„๋ฒ•์„ ๋„์ž…ํ•  ๊ฒƒ์„ ์ œ์‹œํ•˜๊ณ ์ž ํ•œ๋‹ค. ์ด๋ฅผ ์œ„ํ•˜์—ฌ ์„œ์šธ๋Œ€ํ•™๊ต ์–ด๋ฆฐ์ด๋ณ‘์› ์†Œ์•„์‹ ๊ฒฝ๊ณผ์—์„œ ์ž„์ƒ์ ์œผ๋กœ ์ง„๋‹จ๋˜์ง€ ๋ชปํ•œ ๊ทผ์‹ ๊ฒฝ์งˆํ™˜ ํ™˜์ž 94 ๋ช…์„ ๋Œ€์ƒ์œผ๋กœ WES ๋ถ„์„์„ ์‹ค์‹œํ•˜๊ณ , ์ด๋ฏธ ์•Œ๋ ค์ง„ ๊ทผ์‹ ๊ฒฝ์งˆํ™˜์˜ ์›์ธ ์œ ์ „์ž ๋ณ€์ด๋“ค์„ ๋ถ„์„ํ•˜์˜€๋‹ค. ์ถ”๊ฐ€์ ์œผ๋กœ, ๊ธฐ์กด์— WES ๋ถ„์„์ด ์ˆ˜ํ–‰๋œ 63๋ช…์˜ ํ™˜์ž๊ตฐ๊ณผ ์ด ์™ธ์˜ 10๋ช…์˜ ํ™˜์ž๊ตฐ์„ ์ถ”๊ฐ€ํ•˜์—ฌ ์ „์‚ฌ์ฒด ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ์ „์‚ฌ์ฒด ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•˜์—ฌ damaging ๋ณ€์ด ๋ถ„์„, allele-specific expression ๋ถ„์„, ํ™˜์ž๊ตฐ๊ณผ ์ •์ƒ๊ตฐ์—์„œ ๋‹ค๋ฅด๊ฒŒ ๋ฐœํ˜„ํ•˜๋Š” ์œ ์ „์ž (DEG) ๋ฐ ๋น„์ •์ƒ์ ์ธ splicing ์–‘์ƒ์„ ํƒ์ƒ‰ํ•˜๋Š” ๋ถ„์„์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋˜ํ•œ, non-negative matrix factorization ๋ถ„์„ ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์œ ์ „์ž ๋ฐœํ˜„ ํ”„๋กœํŒŒ์ผ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ตฐ์ง‘ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ , ๊ฐ ๊ตฐ์ง‘์„ ํŠน์ง• ์ง“๋Š” ์œ ์ „์ž ๊ทธ๋ฃน์„ ๋„์ถœํ•˜์˜€๋‹ค. ๊ทธ ๊ฒฐ๊ณผ, WES ๋ถ„์„์„ ํ†ตํ•˜์—ฌ 49%์˜ ํ™˜์ž์—์„œ ํ›„๋ณด ์›์ธ ๋ณ€์ด๋ฅผ ํ™•์ธํ•˜์˜€์œผ๋ฉฐ, ๊ทธ ์ค‘ 83%์˜ ํ™˜์ž์—์„œ๋Š” ์•Œ๋ ค์ง„ ๊ทผ์‹ ๊ฒฝ์งˆํ™˜ ์›์ธ ์œ ์ „์ž์˜ ๋ณ€์ด๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. 12๋ช…์˜ ํ™˜์ž์—์„œ๋Š” ๊ทธ ๊ธฐ๋Šฅ์„ฑ์ด ํ™•์‹คํ•˜์ง€ ์•Š์€ ๊ตฌ์กฐ ๋ณ€์ด๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ์ „์‚ฌ์ฒด ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์˜ ๋ณ€์ด ๋ถ„์„์„ ํ†ตํ•˜์—ฌ, WES ์„ ์ˆ˜ํ–‰ํ•˜์ง€ ์•Š์€ 5 ๋ช…์˜ ํ™˜์ž๋ฅผ ํฌํ•จํ•œ ์ด 9 ๋ช…์˜ ํ™˜์ž์—์„œ heterozygous ๋ณ€์ด๋ฅผ ์ถ”๊ฐ€๋กœ ๋ฐœ๊ฒฌํ•˜์˜€๋‹ค. Allele-specific expression ๋ถ„์„์„ ํ†ตํ•˜์—ฌ 2๊ฐœ์˜ ํ›„๋ณด ์›์ธ์œ ์ „์ž๋ฅผ ๋ฐœ๊ฒฌํ•˜์˜€๊ณ , DEG ๋ถ„์„ ๊ฒฐ๊ณผ, 4๋ช…์˜ ํ™˜์ž์—์„œ ์ž ์žฌ์ ์ธ ์›์ธ ์œ ์ „์ž ๊ทธ๋ฃน์„ ์„ ๋ณ„ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋˜ํ•œ, 4 ๋ช…์˜ ํ™˜์ž์—๊ฒŒ์„œ DMD, TTN, MICU1 ์œ ์ „์ž๋“ค์˜ ๋น„์ •์ƒ์ ์ธ splicing์ด ํ™•์ธ๋˜์—ˆ๋‹ค. non-negative matrix factorization ๊ธฐ๋ฐ˜ ๊ตฐ์ง‘ํ™” ๋ถ„์„ ๊ฒฐ๊ณผ, ์œ ์ „์ž ๋ฐœํ˜„ ์–‘์ƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ 6๊ฐœ์˜ ๊ตฐ์ง‘์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋ฅผ ํ†ตํ•˜์—ฌ ์ „์‚ฌ์ฒด ๋ถ„์„๋ฒ•์ด ๊ธฐ์กด์˜ WES ๊ธฐ๋ฒ• ๊ธฐ๋ฐ˜ ๋ถ„์„์˜ ํšจ๊ณผ์ ์ธ ๋ณด์™„ ๊ธฐ๋ฒ•์ด ๋ ์ง€์˜ ์—ฌ๋ถ€๋ฅผ ํ™•์ธํ•˜๊ณ ์ž ํ•˜์˜€๋‹ค. ์ „์‚ฌ์ฒด ๋ถ„์„ ๊ฒฐ๊ณผ, WES ๊ธฐ๋ฒ•์„ ํ†ตํ•ด ์›์ธ ์œ ์ „์ž ๋ณ€์ด๊ฐ€ ํ™•์ธ๋œ ํ™˜์ž๋“ค ์ค‘ 9๋ช…์—๊ฒŒ์„œ ๊ฐ™์€ ๋งฅ๋ฝ์˜ ์ „์‚ฌ์ฒด ์ด์ƒ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ์œผ๋ฉฐ, WES์„ ์ˆ˜ํ–‰ํ•˜์ง€ ์•Š์€ ํ™˜์ž๋“ค ์ค‘ 18๋ช…์—๊ฒŒ์„œ๋„ ์ž ์žฌ์ ์ธ ์›์ธ ์œ ์ „์ž ๋ณ€์ด๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋”ฐ๋ผ์„œ ์ „์‚ฌ์ฒด ๋ถ„์„๋ฒ•์€ ๊ธฐ์กด์˜ ๋ถ„์„๊ธฐ๋ฒ•์œผ๋กœ ์›์ธ ์œ ์ „์ž ๋ณ€์ด๋ฅผ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์—†๋Š” ์ฆ๋ก€์˜ ์ง„๋‹จ์— ์œ ์šฉํ•œ ๋„๊ตฌ๋กœ ์‚ฌ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ์‹œ์‚ฌํ•œ๋‹ค.Introduction. Whole exome sequencing has become a robust and standard tool for rare diseases diagnosis thanks to advantages in cost and data handling. However, whole exome sequencing-based diagnosis rates typically do not exceed 50%, which can be attributed to the difficulty of interpreting variants of uncertain significance, as well as to the disregard of non-coding variants, including variants in intronic and regulatory regions in the genome. Therefore, I explored the utility of transcriptome sequencing as a compensatory approach in rare neuromuscular disorders diagnosis. Methods. Whole exome sequencing of 94 patients with undiagnosed neuromuscular disorders was collected from Seoul National University Childrens Hospital and analyzed for variants in known neuromuscular disease genes. Additional transcriptome sequencing was performed for 63 of the whole exome sequenced patients and for ten patients without genome data. Transcriptome data were utilized for cryptic damaging variants, differentially expression, aberrant splicing and allele specific expression analysis. Furthermore, non-negative matrix factorization was applied to identify expression-based clustering and cluster-specific gene ontology was derived. Results. Whole exome sequencing analysis identified candidate variants in 49% of patients, with 83% of them located within known disease genes. Structural variants with questionable pathogenicity were discovered in twelve cases. RNA-Sequencing based variant calling lead to further discovery of heterozygous candidate variants in nine samples, five of which did not undergo whole exome sequencing. Allele specific expression identified two likely candidate genes and differential gene expression analysis lead to the prioritization of sets of genes in an additional four samples. Lastly, aberrant splicing of DMD, TTN and MICU1 was detected in each of four samples. Non-negative matrix factorization-based clustering resulted in the identification of six clusters with distinct gene expression profiles. Discussion. Firstly, I aimed to evaluate whether transcriptome sequencing can provide additional evidence for the interpretation of whole exome sequencing variants. Overall, transcriptome sequencing was able to detect abnormalities associated with the previously identified mutation in less than 30% of positive whole exome sequencing cases. For samples without whole exome sequencing result, I successfully used transcriptome sequencing to identify potential pathogenic causes in 18 cases. In conclusion, transcriptome sequencing proved to be a useful tool for the diagnosis of whole exome sequencing negative samples, but did not prove to have great utility for the interpretation of pathogenic whole exome sequencing variants.1. INTRODUCTION.....................................................................................1 1.1. Advancement through next generation sequencing...................1 1.2. Genetics of neuromuscular disorders (NMD)..............................3 1.3. Transcriptome sequencing-based NMD diagnosis.......................8 2. METHODS............................................................................................12 2.1. Data collection.........................................................................12 2.2. Whole exome sequencing data analysis....................................13 2.3. Transcriptome sequencing analysis...........................................15 2.4. Non-negative matrix factorization based clustering...................19 3. RESULTS...............................................................................................22 3.1. Data collection.........................................................................22 3.2. Phenotype information.............................................................23 3.3. Whole exome sequencing results..............................................25 3.4. Transcriptome sequencing quality control..................................28 3.5. Transcriptome-based clustering.................................................31 3.6. Exome variants in transcriptome sequencing.............................35 3.7. Transcriptome-sequencing based diagnosis...............................39 4. DISCUSSION..........................................................................................48 5. REFERENCES.........................................................................................57 6. APPENDIX.............................................................................................63 6.1. Supplementary Figures..............................................................63 6.2. Supplementary Tables................................................................67 7. ๊ตญ๋ฌธ์ดˆ๋ก.................................................................................................71Maste

    Modification of nuclear transitions in stellar plasma by electronic processes: K-isomers in 176Lu and 180Ta under s-process conditions

    Full text link
    The influence of the stellar plasma on the production and destruction of K-isomers is studied for the examples 176Lu and 180Ta. Individual electromagnetic transitions are enhanced predominantly by nuclear excitation by electron capture, whereas the other mechanisms of electron scattering and nuclear excitation by electron transition give only minor contributions. It is found that individual transitions can be enhanced significantly for low transition energies below 100 keV. Transitions with higher energies above 200 keV are practically not affected. Although one low-energy transition in 180Ta is enhanced by up to a factor of 10, the stellar transition rates from low-K to high-K states via so-called intermediate states in 176Lu and 180Ta do not change significantly under s-process conditions. The s-process nucleosynthesis of 176Lu and 180Ta remains essentially unchanged.Comment: 10 pages, 10 figures, Phys. Rev. C, accepte

    A cross-correlation of WMAP and ROSAT

    Full text link
    We cross-correlate the recent CMB WMAP 1 year data with the diffuse soft X-ray background map of ROSAT. We look for common signatures due to galaxy clusters (SZ effect in CMB, bremsstrahlung in X-rays) by cross-correlating the two maps in real and in Fourier space. We do not find any significant correlation and we explore the different reasons for this lack of correlation. The most likely candidates are the possibility that we live in a low ฯƒ8\sigma _8 universe (ฯƒ8<0.9\sigma_8 < 0.9) and/or systematic effects in the data especially in the diffuse X-ray maps which may suffer from significant cluster signal subtraction during the point source removal process.Comment: To appear in New Astronomy Reviews, Proceedings of the CMBNET Meeting, 20-21 February, 2003, Oxford, U
    • โ€ฆ
    corecore