117 research outputs found

    Pellet-plasma interaction in a tokamak

    Get PDF

    Quantum trajectory pictures of laser cooling

    Get PDF
    We have applied the method of single atom trajectories to study the mechanism behind some cooling schemes in laser cooling. In several cases we recognize the cooling mechanism as being due to a "Sisyphus" process, where the atoms move in a spatially varying light shift potential and are optically pumped towards the most light shifted states. In other cases we identify a "Sisyphus" process in time, where the light shift is constant and the force on the atom alternates between positive and negative. This process is interrupted by quantum jumps at random instants and in each case we depict the mechanism leading to a cooling force on the atom. In the special case of sub-Doppler laser cooling in a strong magnetic field we obtain 12 jump operators and identify the jump operators responsible for the cooling. The versatility of the single atom trajectory method allows it to be applied to any cooling process and is therefore a very valuable tool in unraveling the physical mechanisms behind cooling processes

    Vus and lepton universality from kaon decays with the KLOE detector

    Get PDF
    KLOE has measured most decay branching ratios of Ks, Kl and K+/- mesons. It has also measured the Kl and the K+- lifetime and determined the shape of the form factors involved in kaon semileptonic decays. We present in the following a description of the above measurements and a well organized compendium of all of our data, with particular attention to correlations. These data provide the basis for the determination of the CKM parameter Vus and a test of the unitarity of the quark flavor mixing matrix. We also test lepton universality and place bounds on new physics using measurements of Vus from Kl2 and Kl3 decays.Comment: 23 pages, 12 figures. Submitted to JHE

    ESA's wind Lidar mission ADM-AEOLUS; on-going scientific activities related to calibration, retrieval and instrument operation

    Get PDF
    The Earth Explorer Atmospheric Dynamics Mission (ADM-Aeolus) of ESA will be the first-ever satellite to provide global observations of wind profiles from space. Its single payload, namely the Atmospheric Laser Doppler Instrument (ALADIN) is a directdetection high spectral resolution Doppler Wind Lidar (DWL), operating at 355 nm, with a fringe-imaging receiver (analysing aerosol and cloud backscatter) and a double-edge receiver (analysing molecular backscatter). In order to meet the stringent mission requirements on wind retrieval, ESA is conducting various science support activities for the consolidation of the on-ground data processing, calibration and sampling strategies. Results from a recent laboratory experiment to study Rayleigh-Brillouin scattering and improve the characterisation of the molecular lidar backscatter signal detected by the ALADIN double-edge Fabry- Perot receiver will be presented in this paper. The experiment produced the most accurate ever-measured Rayleigh-Brillouin scattering profiles for a range of temperature, pressure and gases, representative of Earth’s atmosphere. The measurements were used to validate the Tenti S6 model, which is implemented in the ADM-Aeolus ground processor. First results from the on-going Vertical Aeolus Measurement Positioning (VAMP) study will be also reported. This second study aims at the optimisation of the ADM-Aeolus vertical sampling in order to maximise the information content of the retrieved winds, taking into account the atmospheric dynamical and optical heterogeneity. The impact of the Aeolus wind profiles on Numerical Weather Prediction (NWP) and stratospheric circulation modelling for the different vertical sampling strategies is also being estimated

    Measurement of the absolute branching ratios for semileptonic K+/- decays with the KLOE detector

    Full text link
    Using a sample of over 600 million phi->K+K- decays collected at the Dafne e+e- collider, we have measured with the KLOE detector the absolute branching ratios for the charged kaon semileptonic decays, K+/- -> p0 e nu (gamma) (Ke3) and K+/- -> p0 mu nu (gamma) (Kmu3). The results, BR(Ke3) = 0.04965 +/- 0.00038_{stat} +/- 0.00037_{syst} and BR(Kmu3) = 0.03233 +/- 0.00029_{stat} +/- 0.00026_{syst}, are inclusive of radiation. Accounting for correlations, we derive the ratio Kmu3/Ke3 = 0.6511+/-0.0064. Using the semileptonic form factors measured in the same experiment, we obtain V_{us}f_{+}(0) = 0.2141 +/- 0.0013.Comment: 13 pages, 3 figures, submitted to JHEP. v2: minor revisions required by JHEP, v3: final version published by JHEP (replacement of 2 incorrect affiliations)link: http://www.iop.org/EJ/abstract/1029-8479/2008/02/09

    Precision measurement of σ(e+eπ+πγ)/σ(e+eμ+μγ)\sigma(e^+e^-\rightarrow\pi^+\pi^-\gamma)/\sigma(e^+e^-\rightarrow \mu^+\mu^-\gamma) and determination of the π+π\pi^+\pi^- contribution to the muon anomaly with the KLOE detector

    Full text link
    We have measured the ratio σ(e+eπ+πγ)/σ(e+eμ+μγ)\sigma(e^+e^-\rightarrow\pi^+\pi^-\gamma)/\sigma(e^+e^-\rightarrow \mu^+\mu^-\gamma), with the KLOE detector at DAΦ\PhiNE for a total integrated luminosity of \sim 240 pb1^{-1}. From this ratio we obtain the cross section σ(e+eπ+π)\sigma(e^+e^-\rightarrow\pi^+\pi^-). From the cross section we determine the pion form factor Fπ2|F_\pi|^2 and the two-pion contribution to the muon anomaly aμa_\mu for 0.592<Mππ<0.9750.592<M_{\pi\pi}<0.975 GeV, Δππaμ\Delta^{\pi\pi} a_\mu= (385.1±1.1stat±2.7sys+theo)×1010({\rm 385.1\pm1.1_{stat}\pm2.7_{sys+theo}})\times10^{-10}. This result confirms the current discrepancy between the Standard Model calculation and the experimental measurement of the muon anomaly.Comment: 18 pages, 8 figures, minor text corrections, one table added, version to appear on Physics Letters

    Precise measurements of the eta and the neutral kaon meson masses with the KLOE detector

    Full text link
    We present precise measurements of the eta and K0 masses using the processes phi to eta gamma, eta to gamma gamma and phi to Ks Kl, Ks to pi+ pi-. The K0 mass measurement, M_K=497.583 +/- 0.005 (stat) +/- 0.020 (syst) MeV, is in acceptable agreement with the previous measurements but is more accurate. We find m(eta) = 547.874 +/- 0.007 (stat) +/- 0.031 (syst) MeV. Our value is the most accurate to date and is in agreement with two recent measurements based on eta decays, but is inconsistent, by about 10 sigma, with a measurement of comparable precision based on eta production at threshold.Comment: 15 pages, 8 figures Submitted to Physics Letters

    Charged Kaon K \to 3 pi CP Violating Asymmetries at NLO in CHPT

    Full text link
    We give the first full next-to-leading order analytical results in Chiral Perturbation Theory for the charged Kaon K \to 3 pi slope g and decay rates CP-violating asymmetries. We have included the dominant Final State Interactions at NLO analytically and discussed the importance of the unknown counterterms. We find that the uncertainty due to them is reasonable just for \Delta g_C, i.e. the asymmetry in the K^+ \to pi^+ pi^+ pi^- slope g; we get \Delta g_C = -(2.4 +- 1.2) 10^{-5}. The rest of the asymmetries are very sensitive to the unknown counterterms. In particular, the decay rate asymmetries can change even sign. One can use this large sentivity to get valuable information on those counterterms and on Im(G_8) coupling --very important for the CP-violating parameter epsilon'_K-- from the eventual measurement of these asymmetries. We also provide the one-loop O(e^2 p^2) electroweak octet contributions for the neutral and charged Kaon K \to 3 pi decays.Comment: 43+2 pages, 2 figures. Version accepted in JHEP. Small changes in the final numerics of CP asymmetries due to change in input valu
    corecore