26 research outputs found

    The influence of warm ischemia elimination on kidney injury during transplantation - Clinical and molecular study

    Get PDF
    Kidney surface cooling was used during implantation to assess the effect of warm ischemia elimination on allograft function, histological changes and immune-related gene expression. 23 recipients were randomly assigned to a group operated on with kidney surface cooling during implantation (ice bag technique, IBT group), and the other 23 recipients receiving the contralateral kidney from the same donor were operated on with a standard technique. Three consecutive kidney core biopsies were obtained during the transplantation procedure: after organ recovery, after cold ischemia and after reperfusion. Gene expression levels were determined using low-density arrays (Format 32, TaqMan). The IBT group showed a significantly lower rate of detrimental events (delayed graft function and/or acute rejection, p = 0.015) as well as higher glomerular filtration rate on day 14 (p = 0.026). A greater decrease of MMP9 and LCN2 gene expression was seen in the IBT group during total ischemia (p = 0.003 and p = 0.018). Elimination of second warm ischemia reduced the number of detrimental events after kidney transplantation, and thus had influence on the short-term but not long-term allograft function. Surface cooling of the kidney during vascular anastomosis may reduce some detrimental effects of immune activation resulting from both brain death and ischemia-reperfusion injury

    Structural pathways for ultrafast melting of optically excited thin polycrystalline Palladium films

    Full text link
    Due to its extremely short timescale, the non-equilibrium melting of metals is exceptionally difficult to probe experimentally. The knowledge of melting mechanisms is thus based mainly on the results of theoretical predictions. This work reports on the investigation of ultrafast melting of thin polycrystalline Pd films studied by optical laser pump - X-ray free-electron laser probe experiments and molecular-dynamics simulations. By acquiring X-ray diffraction snapshots with sub-picosecond resolution, we capture the sample's atomic structure during its transition from the crystalline to the liquid state. Bridging the timescales of experiments and simulations allows us to formulate a realistic microscopic picture of melting. We demonstrate that the existing models of strongly non-equilibrium melting, developed for systems with relatively weak electron-phonon coupling, remain valid even for ultrafast heating rates achieved in femtosecond laser-excited Pd. Furthermore, we highlight the role of pre-existing and transiently generated crystal defects in the transition to the liquid state.Comment: main manuscript 33 pages, 9 figures; supplemental material 19 pages, 13 figures - all in one fil

    Role of heat accumulation in the multi-shot damage of silicon irradiated with femtosecond XUV pulses at a 1 MHz repetition rate

    Get PDF
    The role played by heat accumulation in multi-shot damage of silicon was studied. Bulk silicon samples were exposed to intense XUV monochromatic radiation of a 13.5 nm wavelength in a series of 400 femtosecond pulses, repeated with a 1 MHz rate (pulse trains) at the FLASH facility in Hamburg. The observed surface morphological and structural modifications are formed as a result of sample surface melting. Modifications are threshold dependent on the mean fluence of the incident pulse train, with all threshold values in the range of approximately 36-40 mJ/cm<sup>2</sup>. Experimental data is supported by a theoretical model described by the heat diffusion equation. The threshold for reaching the melting temperature (45 mJ/cm<sup>2</sup>) and liquid state (54 mJ/cm<sup>2</sup>), estimated from this model, is in accordance with experimental values within measurement error. The model indicates a significant role of heat accumulation in surface modification processes

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Kidney Transplant Outcome Is Associated with Regulatory T Cell Population and Gene Expression Early after Transplantation

    No full text
    Successful long-term kidney allograft survival with parallel reduction of complications resulting from prolonged immunosuppressive treatment is a goal in kidney transplantation. We studied the immune changes in cell phenotypes and gene expression induced by kidney transplantation. Our goal was to find a phenotypic and/or transcriptional pattern that might be considered prognostic for the kidney transplant outcome. The analysis was performed prospectively on 36 KTx recipients sampled during the first year and followed for five years after transplantation and on 40 long-term KTx recipients (7.9±2.2 y. post-KTx). The research involved flow cytometry assessment of lymphocyte subpopulations (including Tregs and CD3+CD8+CD28− lymphocytes) and gene expression analysis of immune-related genes (CD4, CD8, CTLA4, GZMB, FOXP3, IL10, IL4, ILR2A, NOTCH, PDCD1, PRF1, TGFB, and TNFA). The analysis of patterns observed over the first post-KTx year was confronted with control, pretransplant, and long-term transplant results. Treg counts at months one and three post-KTx correlated positively with the current and future allograft function. FOXP3 gene expression at month one post-KTx was also associated with long-term allograft function. The KTx-induced CD3+CD8+CD28− population correlated with GZMB and PRF1 expression and suggested their cytotoxic properties. The size of the Treg population and regulatory FOXP3 gene expression in the early period after transplantation are associated with kidney transplant outcome. The outlined predictive power of the Treg population needs to be investigated further to be confirmed as one of the immune monitoring strategies that may help achieve the best long-term kidney allograft outcomes

    Pretransplant Immune-and Apoptosis-Related Gene Expression Is Associated with Kidney Allograft Function

    No full text
    Renal transplant candidates present immune dysregulation, caused by chronic uremia. The aim of the study was to investigate whether pretransplant peripheral blood gene expression of immune factors affects clinical outcome of renal allograft recipients. Methods. In a prospective study, we analyzed pretransplant peripheral blood gene expression in 87 renal transplant candidates with real-time PCR on custom-designed low density arrays (TaqMan). Results. Immediate posttransplant graft function (14-day GFR) was influenced negatively by TGFB1 ( = 0.039) and positively by IL-2 gene expression ( = 0.040). Pretransplant blood mRNA expression of apoptosis-related genes (CASP3, FAS, and IL-18) and Th1-derived cytokine gene IFNG correlated positively with short-(6-month GFR CASP3: = 0.027, FAS: = 0.021, and IFNG: = 0.029) and long-term graft function (24-month GFR CASP3: = 0.003, FAS: = 0.033, IL-18: = 0.044, and IFNG: = 0.04). Conclusion. Lowered pretransplant Th1-derived cytokine and apoptosis-related gene expressions were a hallmark of subsequent worse kidney function but not of acute rejection rate. The pretransplant IFNG and CASP3 and FAS and IL-18 genes&apos; expression in the recipients&apos; peripheral blood is the possible candidate for novel biomarker of short-and long-term allograft function

    Type of Renal Replacement Therapy (Hemodialysis versus Peritoneal Dialysis) Does Not Affect Cytokine Gene Expression or Clinical Parameters of Renal Transplant Candidates

    No full text
    Patients with renal failure suffer from immune disturbances, caused by uremic toxins and influenced by dialysis treatment. The aim of the present study was to reveal whether type of dialysis modality (hemodialysis, HD, versus peritoneal dialysis, PD) differentially affects the immunocompetence, particularly the expression of genes involved in the immune response. Material. 87 renal transplant candidates (66 HD, 21 PD) were included in the study. Methods. The peripheral blood RNA samples were obtained with the PAXgene Blood system just before transplantation. The gene expression of CASP3, FAS, TP53, FOXP3, IFNG, IL2, IL6, IL8, IL10, IL17, IL18, LCN2, TGFB1, and TNF was assessed with real-time PCR on custom-designed low density arrays (TaqMan). Gene expression data were analyzed in relation to pretransplant clinical parameters. Results. The mean expression of examined genes showed no significant differences between PD and HD with the exception of FAS, expression of which was 30% higher in PD patients compared to the HD group. There was nonsignificantly higher expression of proinflammatory cytokines in the PD group. The clinical inflammatory parameters (CRP, albumin, cholesterol, and hemoglobin levels) did not differ between the groups. Conclusion. Type of renal replacement therapy exerts no differential effect on cytokine gene expression or inflammatory clinical parameters
    corecore