42 research outputs found

    Approaches for the improvement of physical transport processes in numerical models of coastal oceans

    Get PDF
    In this thesis three approaches to improve the simulated transport processes in coastal ocean models are discussed. The first approach deals with the discretisation of the governing equations and provides a diagnostic tool to assess the accuracy of a numerical transport scheme. The second approach considers the validity of the governing equations itself and suggests an alternative inclusion of missing nonhydrostatic dynamics. The third approach presents the inclusion of unresolved wind wave effects into a coastal ocean model

    Discrete variance decay analysis of spurious mixing

    Full text link
    Expressions for local discrete variance decay (DVD) rates are directly derived from discrete tracer equations without any assumptions on discrete fluxes of the second moment. Spurious mixing (SM) associated with numerical implementations of scalar advection and diffusion is thus estimated. The new framework is shown to avoid the need for second-moment flux definition when solved on finite-volume cell edges but still invoke certain second-moment fluxes when the DVD rates are partitioned to participating cell nodes. These implied discrete fluxes are shown to differ from those proposed in earlier literature (but share the same dissipative part) and thus reveal the non-uniqueness of their nature. They are shown to be ambiguous for high-order advection schemes introducing uncertainty to the locality of any estimates produced by a DVD approach. Additional damping of flux divergence through temporal averaging or some coarse-graining is thus shown to be necessary. Through the application of this technique, SM is found to be correlated with the distribution of eddy kinetic energy. The contribution from vertical advection to SM is found to be relatively small and correlated with the distribution of buoyancy fluxes. The explored high-order schemes are found to demonstrate levels of spurious mixing which may locally exceed background physical mixing.Comment: Submitted to Ocean Modelling Manuscript number: OCEMOD-D-23-00145. Name of funder: Deutsche Forschungsgemeinschaft. Grant agreement or award number: 27476265

    The large scale impact of offshore wind farm structures on pelagic primary productivity in the southern North Sea

    Full text link
    The increasing demand for renewable energy is projected to result in a 40-fold increase in offshore wind electricity in the European Union by 2030. Despite a great number of local impact studies for selected marine populations, the regional ecosystem impacts of offshore wind farm structures are not yet well assessed nor understood. Our study investigates whether the accumulation of epifauna, dominated by the filter feeder Mytilus edulis (blue mussel), on turbine structures affects pelagic primary productivity and ecosystem functioning in the southern North Sea. We estimate the anthropogenically increased potential distribution based on the current projections of turbine locations and reported patterns of M. edulis settlement. This distribution is integrated through the Modular Coupling System for Shelves and Coasts to state-of-the-art hydrodynamic and ecosystem models. Our simulations reveal non-negligible potential changes in regional annual primary productivity of up to 8% within the offshore wind farm area, and induced maximal increases of the same magnitude in daily productivity also far from the wind farms. Our setup and modular coupling are effective tools for system scale studies of other environmental changes arising from large-scale offshore wind-farming such as ocean physics and distributions of pelagic top predators.Comment: 17 pages, 6 figures, re-revised manuscript submitted to Hydrobiologi

    Split-explicit external mode solver in finite volume sea ice ocean model FESOM2

    Full text link
    A novel split-explicit (SE) external mode solver for the Finite volumE Sea ice-Ocean Model (FESOM2) is presented. It is compared with the semi-implicit (SI) solver currently used in FESOM2. The SE solver utilises a dissipative asynchronous (forward-backward) time-stepping scheme. Its implementation with Arbitrary Lagrangian-Eulerian (ALE) vertical coordinates like Z-star and Z-tilde is explored. The comparisons are performed through multiple test cases involving idealised and realistic global simulations. The SE solver demonstrates lower phase errors and dissipation, but maintain a simulated mean ocean state very similar to the SI solver. The SE solver is also shown to possess better run-time performance and parallel scalability across all tested workloads.Comment: Submitted to Geoscientific Model Development number: GMD-2023-208. Development code for FESOM2.5 with explicit subcycling available at: https://zenodo.org/doi/10.5281/zenodo.10040943. Name of funder: Deutsche Forschungsgemeinschaft. Grant agreement or award number: 27476265

    Modular System for Shelves and Coasts (MOSSCO v1.0) - a flexible and multi-component framework for coupled coastal ocean ecosystem modelling

    Full text link
    Shelf and coastal sea processes extend from the atmosphere through the water column and into the sea bed. These processes are driven by physical, chemical, and biological interactions at local scales, and they are influenced by transport and cross strong spatial gradients. The linkages between domains and many different processes are not adequately described in current model systems. Their limited integration level in part reflects lacking modularity and flexibility; this shortcoming hinders the exchange of data and model components and has historically imposed supremacy of specific physical driver models. We here present the Modular System for Shelves and Coasts (MOSSCO, http://www.mossco.de), a novel domain and process coupling system tailored---but not limited--- to the coupling challenges of and applications in the coastal ocean. MOSSCO builds on the existing coupling technology Earth System Modeling Framework and on the Framework for Aquatic Biogeochemical Models, thereby creating a unique level of modularity in both domain and process coupling; the new framework adds rich metadata, flexible scheduling, configurations that allow several tens of models to be coupled, and tested setups for coastal coupled applications. That way, MOSSCO addresses the technology needs of a growing marine coastal Earth System community that encompasses very different disciplines, numerical tools, and research questions.Comment: 30 pages, 6 figures, submitted to Geoscientific Model Development Discussion

    The impact of advection schemes on restratifiction due to lateral shear and baroclinic instabilities

    Get PDF
    This paper quantifies spurious dissipation and mixing of various advection schemes in idealised experiments of lateral shear and baroclinic instabilities in numerical simulations of a re-entrant Eady channel for configurations with large and small Rossby numbers. In addition, a two-dimensional barotropic shear instability test case is used to examine numerical dissipation of momentum advection in isolation, without any baroclinic effects. Effects of advection schemes on the evolution of background potential energy and the dynamics of the restratification process are analysed. The advection schemes for momentum and tracers are considered using several different methods including a recently developed local dissipation analysis. As highly accurate but computationally demanding schemes we apply WENO and MP5, and as more efficient lower-order total variation diminishing (TVD) schemes we use among others the SPL-max-View the MathML source13 and a third-order-upwind scheme. The analysis shows that the MP5 and SPL-max-View the MathML source13 schemes provide the most accurate results. Following our comprehensive analysis of computational costs, the MP5 scheme is approximately 2.3 times more expensive in our implementation. In contrast to the configuration with a small Rossby number, in which significant differences between schemes are apparent, the different advection schemes behave similarly for a larger Rossby number. Regions of high numerical dissipation are shown to be associated with low grid Reynolds numbers. The major outcome of the present study is that generally positive global numerical dissipation and positive background potential energy evolution delay the restratification process

    Challenges and prospects for dynamical cores of oceanic models across all scales

    Get PDF
    International audienceThis poster outlines an initiative to bring together the world-wide leading researchers actively contributing to the development of oceanic model dynamical cores irrespective of target applications (regional, coastal, or global). The first community for the numerical modeling ofthe global, regional and coastal ocean (COMMODORE) workshop (https://commodore2018.sciencesconf.org/) has been organized in Paris in September 2018 [1]. In total, the participants represented 15 oceanic dynamical cores among the most widely used by the research and operational community. The present poster summarizes the challenges and prospects for oceanic numerical cores across all scales discussed during the workshop. In particular, identified challenges to be addressed include strategies for multi-resolution, energy consistency and resolved/unresolved scales coupling, the design of vertical coordinates and their link with spurious numerical mixing, the inclusion of non-hydrostatic pressure contribution within existing primitive equations models, and the proper treatment of wetting and drying
    corecore