1,282 research outputs found

    A Central Role for Cohesins in Sister Chromatid Cohesion, Formation of Axial Elements, and Recombination during Yeast Meiosis

    Get PDF
    AbstractA multisubunit complex, called cohesin, containing Smc1p, Smc3p, Scc1p, and Scc3p, is required for sister chromatid cohesion in mitotic cells. We show here that Smc3p and a meiotic version of Scc1p called Rec8p are required for cohesion between sister chromatids, for formation of axial elements, for reciprocal recombination, and for preventing hyperresection of double-strand breaks during meiosis. Both Rec8p and Smc3p colocalize with chromosome cores independently of synapsis during prophase I and largely disappear from chromosome arms after pachytene but persist in the neighborhood of centromeres until the onset of anaphase II. The eukaryotic cell's cohesion apparatus is required both for the repair of recombinogenic lesions and for chromosome segregation and therefore appears to lie at the heart of the meiotic process

    Chaotic Inflationary Universe on Brane

    Full text link
    The chaotic inflationary model of the early universe, proposed by Linde is explored in the brane world considering matter described by a minimally coupled self interacting scalar field. We obtain cosmological solutions which admit evolution of a universe either from a singularity or without a singularity. It is found that a very weakly coupled self-interacting scalar field is necessary for a quartic type potential in the brane world model compared to that necessary in general relativity. In the brane world sufficient inflation may be obtained even with an initial scalar field having value less than the Planck scale. It is found that if the universe is kinetic energy dominated to begin with, it transits to an inflationary stage subsequently.Comment: 13 pages, no fig., accepted in Physical Review

    Three-dimensional flux states as a model for the pseudogap phase of transition metal oxides

    Full text link
    We propose that the pseudogap state observed in the transition metal oxides can be explained by a three-dimensional flux state, which exhibits spontaneously generated currents in its ground state due to electron-electron correlations. We compare the energy of the flux state to other classes of mean field states, and find that it is stabilized over a wide range of tt and ÎŽ\delta. The signature of the state will be peaks in the neutron diffraction spectra, the location and intensity of which are presented. The dependence of the pseudogap in the optical conductivity is calculated based on the parameters in the model.Comment: submitted to Phys. Rev. B on January 8, 200

    Unitarity and the Bethe-Salpeter Equation

    Full text link
    We investigate the relation between different three-dimensional reductions of the Bethe-Salpeter equation and the analytic structure of the resultant amplitudes in the energy plane. This correlation is studied for both the ϕ2σ\phi^2\sigma interaction Lagrangian and the πN\pi N system with ss-, uu-, and tt-channel pole diagrams as driving terms. We observe that the equal-time equation, which includes some of the three-body unitarity cuts, gives the best agreement with the Bethe-Salpeter result. This is followed by other 3-D approximations that have less of the analytic structure.Comment: 17 pages, 8 figures; RevTeX. Version accepted for publication in Phys. Rev.

    Higher dimensional radiation collapse and cosmic censorship

    Get PDF
    We study the occurrence of naked singularities in the spherically symmetric collapse of radiation shells in a higher dimensional spacetime. The necessary conditions for the formation of a naked singularity or a black hole are obtained. The naked singularities are found to be strong in the Tipler's sense and thus violating cosmic censorship conjecture.Comment: 4 pages, ReVTeX, Phys Rev D Vol 62 107502 (2000

    Overlevingsplan bos en natuur; monitoring EGM projecten 2000

    Get PDF
    In het kader van het programma Overlevingsplan Bos en Natuur is een monitoringplan en een meetprotocol opgesteld voor de monitoring van de resultaten van effectgerichte maatregelen . In het monitoringplan zijn de opzet en doel van het monitoringplan en de meetdoelstelling besproken . In de meetprotocollen zijn de meetvariabelen genoemd die gemonitord moeten worden en is aangegeven hoe de opname van de variabelen uitgevoerd moet worden . Er zijn twee protocollen onderscheiden: In Protocol A wordt de monitoring voor steekproefprojecten, dat zijn projecten die in een 10% steekproef van het totale aantal EGM-projecten vallen, beschreven en in Protocol B wordt de monitoring van doelen rode lijstsoorten beschreven wat in alle EGM-projecten uitgevoerd gaat worden

    Coronal mass ejections as expanding force-free structures

    Full text link
    We mode Solar coronal mass ejections (CMEs) as expanding force-fee magnetic structures and find the self-similar dynamics of configurations with spatially constant \alpha, where {\bf J} =\alpha {\bf B}, in spherical and cylindrical geometries, expanding spheromaks and expanding Lundquist fields correspondingly. The field structures remain force-free, under the conventional non-relativistic assumption that the dynamical effects of the inductive electric fields can be neglected. While keeping the internal magnetic field structure of the stationary solutions, expansion leads to complicated internal velocities and rotation, induced by inductive electric field. The structures depends only on overall radius R(t) and rate of expansion \dot{R}(t) measured at a given moment, and thus are applicable to arbitrary expansion laws. In case of cylindrical Lundquist fields, the flux conservation requires that both axial and radial expansion proceed with equal rates. In accordance with observations, the model predicts that the maximum magnetic field is reached before the spacecraft reaches the geometric center of a CME.Comment: 19 pages, 9 Figures, accepted by Solar Physic

    Nuclear organisation and replication timing are coupled through RIF1-PP1 interaction

    Get PDF
    Three-dimensional genome organisation and replication timing are known to be correlated, however, it remains unknown whether nuclear architecture overall plays an instructive role in the replication-timing programme and, if so, how. Here we demonstrate that RIF1 is a molecular hub that co-regulates both processes. Both nuclear organisation and replication timing depend upon the interaction between RIF1 and PP1. However, whereas nuclear architecture requires the full complement of RIF1 and its interaction with PP1, replication timing is not sensitive to RIF1 dosage. The role of RIF1 in replication timing also extends beyond its interaction with PP1. Availing of this separation-of-function approach, we have therefore identified in RIF1 dual function the molecular bases of the co-dependency of the replication-timing programme and nuclear architecture

    Interchange Slip-Running Reconnection and Sweeping SEP Beams

    Get PDF
    We present a new model to explain how particles (solar energetic particles; SEPs), accelerated at a reconnection site that is not magnetically connected to the Earth, could eventually propagate along the well-connected open flux tube. Our model is based on the results of a low-beta resistive magnetohydrodynamics simulation of a three-dimensional line-tied and initially current-free bipole, that is embedded in a non-uniform open potential field. The topology of this configuration is that of an asymmetric coronal null-point, with a closed fan surface and an open outer spine. When driven by slow photospheric shearing motions, field lines, initially fully anchored below the fan dome, reconnect at the null point, and jump to the open magnetic domain. This is the standard interchange mode as sketched and calculated in 2D. The key result in 3D is that, reconnected open field lines located in the vicinity of the outer spine, keep reconnecting continuously, across an open quasi-separatrix layer, as previously identified for non-open-null-point reconnection. The apparent slipping motion of these field lines leads to form an extended narrow magnetic flux tube at high altitude. Because of the slip-running reconnection, we conjecture that if energetic particles would be traveling through, or be accelerated inside, the diffusion region, they would be successively injected along continuously reconnecting field lines that are connected farther and farther from the spine. At the scale of the full Sun, owing to the super-radial expansion of field lines below 3 solar radii, such energetic particles could easily be injected in field lines slipping over significant distances, and could eventually reach the distant flux tube that is well-connected to the Earth

    Higher Dimensional Cosmology with Some Dark Energy Models in Emergent, Logamediate and Intermediate Scenarios of the Universe

    Full text link
    We have considered N-dimensional Einstein field equations in which four-dimensional space-time is described by a FRW metric and that of extra dimensions by an Euclidean metric. We have chosen the exponential forms of scale factors a and d numbers of b in such a way that there is no singularity for evolution of the higher dimensional Universe. We have supposed that the Universe is filled with K-essence, Tachyonic, Normal Scalar Field and DBI-essence. Here we have found the nature of potential of different scalar field and graphically analyzed the potentials and the fields for three scenario namely Emergent Scenario, Logamediate Scenario and Intermediate Scenario. Also graphically we have depicted the geometrical parameters named statefinder parameters and slow-roll parameters in the higher dimensional cosmology with the above mentioned scenarios.Comment: 21 pages, 36 figure
    • 

    corecore