70 research outputs found

    The relevance of the contemporary landscape-ecological and biogeochemical studies of the Ob floodplain

    Get PDF
    We have systematized and summarized the results of the Ob River floodplain studies and have shown that the flood and the floodplain influence all the territory of Western Siberia due to the processes happening there. The floodplain at different times was the object of interest of many scientists, but the total level of study of the Ob and the associated ground and the lake network water resources and quality can be generally assessed as low. The waters of the Ob middle course are quite polluted according to bacteria content. It is possible that a significant part oforganic and biogenic substances, microorganisms and some microelements come into the Ob floodplain waters from anthropogenic and natural sources distributed in the watersheds area. The soils of the Ob Riverfloodplain can be considered to be clean andfree ofany chemical pollution. In these soils, the amount of trace elements is small. To study the floodplain changes after a flood the methods of landscape ecology are used, such as the collection and analysis of stock and descriptive materials, literature and maps; the preparation of a series of component and general landscape maps. Nowadays a complex research of the Ob River and the adjacent surface waters is relevant

    Permafrost coverage, watershed area and season control of dissolved carbon and major elements in western Siberian rivers

    Get PDF
    Analysis of organic and inorganic carbon (DOC and DIC, respectively), pH, Na, K, Ca, Mg, Cl, SO<sub>4</sub> and Si in ~ 100 large and small rivers (< 10 to &le; 150 000 km<sup>2</sup>) of western Siberia sampled in winter, spring, and summer over a more than 1500 km latitudinal gradient allowed establishing main environmental factors controlling the transport of river dissolved components in this environmentally important region, comprising continuous, discontinuous, sporadic and permafrost-free zones. There was a significant latitudinal trend consisting in a general decrease in DOC, DIC, SO<sub>4</sub>, and major cation (Ca, Mg, Na, K) concentration northward, reflecting the interplay between groundwater feeding (detectable mostly in the permafrost-free zone, south of 60Β° N) and surface flux (in the permafrost-bearing zone). The northward decrease in concentration of inorganic components was strongly pronounced both in winter and spring, whereas for DOC, the trend of concentration decrease with latitude was absent in winter, and less pronounced in spring flood than in summer baseflow. The most significant decrease in K concentration from the southern (< 59Β° N) to the northern (61–67Β° N) watersheds occurs in spring, during intense plant litter leaching. The latitudinal trends persisted for all river watershed size, from < 100 to > 10 000 km<sup>2</sup>. Environmental factors are ranked by their increasing effect on DOC, DIC, Ξ΄<sup>13</sup>C<sub>DIC</sub>, and major elements in western Siberian rivers as follows: watershed area < season < latitude. Because the degree of the groundwater feeding is different between large and small rivers, we hypothesize that, in addition to groundwater feeding of the river, there was a significant role of surface and shallow subsurface flow linked to plant litter degradation and peat leaching. We suggest that plant-litter- and topsoil-derived DOC adsorbs on clay mineral horizons in the southern, permafrost-free and discontinuous/sporadic permafrost zone but lacks the interaction with minerals in the continuous permafrost zone. It can be anticipated that, under climate warming in western Siberia, the maximal change will occur in small (< 1000 km<sup>2</sup> watershed) rivers DOC, DIC and ionic composition and this change will be mostly pronounced in summer

    Size distribution, surface coverage, water, carbon, and metal storage of thermokarst lakes in the permafrost zone of the Western Siberia Lowland

    Get PDF
    Despite the importance of thermokarst (thaw) lakes of the subarctic zone in regulating greenhouse gas exchange with the atmosphere and the flux of metal pollutants and micro-nutrients to the ocean, the inventory of lake distribution and stock of solutes for the permafrost-affected zone are not available. We quantified the abundance of thermokarst lakes in the continuous, discontinuous, and sporadic permafrost zones of the western Siberian Lowland (WSL) using Landsat-8 scenes collected over the summers of 2013 and 2014. In a territory of 105 million ha, the total number of lakes >0.5 ha is 727,700, with a total surface area of 5.97 million ha, yielding an average lake coverage of 5.69% of the territory. Small lakes (0.5–1.0 ha) constitute about one third of the total number of lakes in the permafrost-bearing zone of WSL, yet their surface area does not exceed 2.9% of the total area of lakes in WSL. The latitudinal pattern of lake number and surface coverage follows the local topography and dominant landscape zones. The role of thermokarst lakes in dissolved organic carbon (DOC) and most trace element storage in the territory of WSL is non-negligible compared to that of rivers. The annual lake storage across the WSL of DOC, Cd, Pb, Cr, and Al constitutes 16%, 34%, 37%, 57%, and 73%, respectively, of their annual delivery by WSL rivers to the Arctic Ocean from the same territory. However, given that the concentrations of DOC and metals in the smallest lakes (<0.5 ha) are much higher than those in the medium and large lakes, the contribution of small lakes to the overall carbon and metal budget may be comparable to, or greater than, their contribution to the water storage. As such, observations at high spatial resolution (<0.5 ha) are needed to constrain the reservoirs and the mobility of carbon and metals in aquatic systems. To upscale the DOC and metal storage in lakes of the whole subarctic, the remote sensing should be coupled with hydrochemical measurements in aquatic systems of boreal plains

    Seasonal dynamics of organic carbon and metals in thermokarst lakes from the discontinuous permafrost zone of western Siberia

    Get PDF
    Despite relatively good knowledge of the biogeochemistry of Siberian thermokarst lakes during summer base flow, their seasonal dynamics remains almost unexplored. This work describes the chemical composition of 130 thermokarst lakes ranging in size from a few m2 to several km2, located in the discontinuous permafrost zone. Lakes were sampled during spring flood, just after the ice break (early June), the end of summer (August), the beginning of ice formation (October) and during the full freezing season in winter (February). The lakes larger than 1000m2 did not exhibit any statistically significant control of the lake size on dissolved organic carbon (DOC), the major and trace element concentrations over three major open water seasons. On the annual scale, the majority of dissolved elements including organic carbon increased their concentration from 30 to 500 %, with a statistically significant (p summer>autumn>winter. The ice formation in October included several stages: first, surface layer freezing followed by crack (fissure) formation with unfrozen water from the deeper layers spreading over the ice surface. This water was subsequently frozen and formed layered ice rich in organic matter. As a result, the DOC and metal (Mn, Fe, Ni, Cu, Zn, As, Ba and Pb) concentrations were highest near the surface of the ice column (0 to 20 cm) and decreased by a factor of 2 towards the bottom. The main implications of discovered freeze-driven solute concentrations in thermokarst lake waters are enhanced colloidal coagulation and removal of dissolved organic matter and associated insoluble metals from the water column to the sediments. The measured distribution coefficients of a TE between amorphous organo-ferric coagulates and lake water (<0.45 ΞΌm) were similar to those reported earlier for Fe-rich colloids and low molecular weight (<1 kDa, or <1–2 nm) fractions of thermokarst lake waters, suggesting massive coprecipitation of TE with amorphous Fe oxyhydroxide stabilized by organic matter. Although the concentration of most elements was lowest in spring, this period of maximal water coverage of land created a significant reservoir of DOC and soluble metals in the water column that can be easily mobilized to the hydrological network. The highest DOC concentration observed in the smallest (<100m2) water bodies in spring suggests their strongly heterotrophic status and, therefore, a potentially elevated CO2 flux from the lake surface to the atmosphere

    Landscape, soil, lithology, climate and permafrost control on dissolved carbon, major and trace elements in the Ob River, Western Siberia

    Get PDF
    In order to foresee possible changes in the elementary composition of Arctic river waters, complex studies with extensive spatial coverage, including gradients in climate and landscape parameters, are needed. Here, we used the unique position of the Ob River, draining through the vast partially frozen peatlands of the western Siberia Lowland and encompassing a sizable gradient of climate, permafrost, vegetation, soils and Quaternary deposits, to assess a snap-shot (8–23 July 2016) concentration of all major and trace elements in the main stem (~3000 km transect from the Tom River confluence in the south to Salekhard in the north) and its 11 tributaries. During the studied period, corresponding to the end of the spring flood-summer baseflow, there was a systematic decrease, from the south to the north, of Dissolved Inorganic Carbon (DIC), Specific Conductivity, Ca and some labile trace elements (Mo, W and U). In contrast, Dissolved Organic Carbon (DOC), Fe, P, divalent metals (Mn, Ni, Cu, Co and Pb) and low mobile trace elements (Y, Nb, REEs, Ti, Zr, Hf and Th) sizably increased their concentration northward. The observed latitudinal pattern in element concentrations can be explained by progressive disconnection of groundwaters from the main river and its tributaries due to a northward increase in the permafrost coverage. A northward increase in bog versus forest coverage and an increase in DOC and Fe export enhanced the mobilization of insoluble, low mobile elements which were present in organo-ferric colloids (1 kDaβ€”0.45 Β΅m), as confirmed by an in-situ dialysis size fractionation procedure. The chemical composition of the sampled mainstream and tributaries demonstrated significant (p < 0.01) control of latitude of the sampling point; permafrost coverage; proportion of bogs, lakes and floodplain coverage and lacustrine and fluvio-glacial Quaternary deposits of the watershed. This impact was mostly pronounced on DOC, Fe, P, divalent metals (Mn, Co, Ni, Cu and Pb), Rb and low mobile lithogenic trace elements (Al, Ti, Cr, Y, Zr, Nb, REEs, Hf and Th). The pH and concentrations of soluble, highly mobile elements (DIC, SO4, Ca, Sr, Ba, Mo, Sb, W and U) positively correlated with the proportion of forest, loesses, eluvial, eolian, and fluvial Quaternary deposits on the watershed. Consistent with these correlations, a Principal Component Analysis demonstrated two main factors explaining the variability of major and trace element concentration in the Ob River main stem and tributaries. The DOC, Fe, divalent metals and trivalent and tetravalent trace elements were presumably controlled by a northward increase in permafrost, floodplain, bogs, lakes and lacustrine deposits on the watersheds. The DIC and labile alkaline-earth metals, oxyanions (Mo, Sb and W) and U were impacted by southward-dominating forest coverage, loesses and eluvial and fertile soils. Assuming that climate warming in the WSL will lead to a northward shift of the forest and permafrost boundaries, a β€œsubstituting space for time” approach predicts a future increase in the concentration of DIC and labile major and trace elements and a decrease of the transport of DOC and low soluble trace metals in the form of colloids in the main stem of the Ob River. Overall, seasonally-resolved transect studies of large riverine systems of western Siberia are needed to assess the hydrochemical response of this environmentally-important territory to on-going climate change

    Investigation of the earth roof through the combined method: mechanical way and ground penetrating radar in the Yamalo-Nenets Autonomous Okrug

    Get PDF
    The paper presents the results of the multidisciplinary experimental investigation of the soils in the sporadic permafrost Northern-taiga subzone (Yamalo-Nenets Autonomous Okrug, Western Siberia) based on the combination of the methods of radiophysical GPR investigation and classical methods of soil science. The aim is to develop the methods of objective identification of soils during the decoding of radarograms when monitoring the state of permafrost soil

    Pilot studies of the unique highland palsa mire in Western Sayan (Tuva Republic, Russian Federation)

    Get PDF
    In contrast to the well-studied West Siberian sector of frozen bogs in the Russian Arctic, the frozen mound bogs (so-called β€œpalsas”) on the highlands of Southern Siberia have not yet been studied, but they are suspected to be even more sensitive to ongoing climate change. This article provides the pilot study on palsa mire Kara-Sug in the highland areas of Western Sayan mountain system, Tuva Republic. The study focuses on the current state of palsa mire and surrounding landscapes, providing wide range of ecological characteristics while describing ongoing transformations of natural landscapes under a changing climate. The study used a variety of field and laboratory methods: the integrated landscape-ecological approach, the study of peat deposits, geobotanical analysis, and modern analysis of the chemical composition of water, peat, and soils. The study shows that highland palsa mires are distinguished by their compactness and high variety of cryogenic landforms leading to high floristic and ecosystem diversity compared with lowland palsa mires. This information brings new insights and contributes to a better understanding of extrazonal highland palsa mires, which remain a β€œwhite spot” in the global environmental sciences

    Hydroclimatic Controls on the Isotopic (Ξ΄18 O, Ξ΄2 H, d-excess) Traits of Pan-Arctic Summer Rainfall Events

    Get PDF
    Arctic sea-ice loss is emblematic of an amplified Arctic water cycle and has critical feedback implications for global climate. Stable isotopes (delta O-18, delta H-2, d-excess) are valuable tracers for constraining water cycle and climate processes through space and time. Yet, the paucity of well-resolved Arctic isotope data preclude an empirically derived understanding of the hydrologic changes occurring today, in the deep (geologic) past, and in the future. To address this knowledge gap, the Pan-Arctic Precipitation Isotope Network (PAPIN) was established in 2018 to coordinate precipitation sampling at 19 stations across key tundra, subarctic, maritime, and continental climate zones. Here, we present a first assessment of rainfall samples collected in summer 2018 (n = 281) and combine new isotope and meteorological data with sea ice observations, reanalysis data, and model simulations. Data collectively establish a summer Arctic Meteoric Water Line where delta H-2 = 7.6.delta O-18-1.8 (r(2) = 0.96, p 0.75 parts per thousand/degrees C) were observed at continental sites, while statistically significant temperature relations were generally absent at coastal stations. Model outputs indicate that 68% of the summer precipitating air masses were transported into the Arctic from mid-latitudes and were characterized by relatively high delta O-18 values. Yet 32% of precipitation events, characterized by lower delta O-18 and high d-excess values, derived from northerly air masses transported from the Arctic Ocean and/or its marginal seas, highlighting key emergent oceanic moisture sources as sea ice cover declines. Resolving these processes across broader spatial-temporal scales is an ongoing research priority, and will be key to quantifying the past, present, and future feedbacks of an amplified Arctic water cycle on the global climate system
    • …
    corecore