4,833 research outputs found

    Fluctuation superconductivity limited noise in a transition-edge sensor

    Get PDF
    In order to investigate the origin of the until now unaccounted excess noise and to minimize the uncontrollable phenomena at the transition in X-ray microcalorimeters we have developed superconducting transition-edge sensors into an edgeless geometry, the so-called Corbino disk (CorTES), with superconducting contacts in the centre and at the outer perimeter. The measured rms current noise and its spectral density can be modeled as resistance noise resulting from fluctuations near the equilibrium superconductor-normal metal boundaryComment: 9 pages, 4 figures.; Corrections to text and equations; replaced the affected figures. Added reference [12

    A transmission problem across a fractal self-similar interface

    Full text link
    We consider a transmission problem in which the interior domain has infinitely ramified structures. Transmission between the interior and exterior domains occurs only at the fractal component of the interface between the interior and exterior domains. We also consider the sequence of the transmission problems in which the interior domain is obtained by stopping the self-similar construction after a finite number of steps; the transmission condition is then posed on a prefractal approximation of the fractal interface. We prove the convergence in the sense of Mosco of the energy forms associated with these problems to the energy form of the limit problem. In particular, this implies the convergence of the solutions of the approximated problems to the solution of the problem with fractal interface. The proof relies in particular on an extension property. Emphasis is put on the geometry of the ramified domain. The convergence result is obtained when the fractal interface has no self-contact, and in a particular geometry with self-contacts, for which an extension result is proved

    Discovery of a New Deeply Eclipsing SU UMa-Type Dwarf Nova, IY UMa (= TmzV85)

    Full text link
    We discovered a new deeply eclipsing SU UMa-type dwarf nova, IY UMa, which experienced a superoutburst in 2000 January. Our monitoring revealed two distinct outbursts, which suggest a superoutburst interval of ~800 d, or its half, and an outburst amplitude of 5.4 mag. From time-series photometry during the superoutburst, we determined a superhump and orbital period of 0.07588 d and 0.0739132 d, respectively.Comment: 5 pages, 3 figures, accepted by PASJ lette

    Homogeneous Fermion Superfluid with Unequal Spin Populations

    Full text link
    For decades, the conventional view is that an s-wave BCS superfluid can not support uniform spin polarization due to a gap Δ\Delta in the quasiparticle excitation spectrum. We show that this is an artifact of the dismissal of quasiparticle interactions VqpV_{qp}^{} in the conventional approach at the outset. Such interactions can cause triplet fluctuations in the ground state and hence non-zero spin polarization at "magnetic field" h<Δh<\Delta. The resulting ground state is a pairing state of quasiparticles on the ``BCS vacuum". For sufficiently large VqpV_{qp}, the spin polarization of at unitarity has the simple form m∝Ό1/2m\propto \mu^{1/2}. Our study is motivated by the recent experiments at Rice which found evidence of a homogenous superfluid state with uniform spin polarization.Comment: 4 pages, 3 figure

    Imbalanced Superfluid Phase of a Trapped Fermi Gas in the BCS-BEC Crossover Regime

    Full text link
    We theoretically investigate the ground state of trapped neutral fermions with population imbalance in the BCS-BEC crossover regime. On the basis of the single-channel Hamiltonian, we perform full numerical calculations of the Bogoliubov-de Gennes equation coupled with the regularized gap and number equations. The zero-temperature phase diagram in the crossover regime is presented, where the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing state governs the weak-coupling BCS region of a resonance. It is found that the FFLO oscillation vanishes in the BEC side, in which the system under population imbalance turns into a phase separation (PS) between locally binding superfluid and fully polarized spin domains. We also demonstrate numerical calculations with a large particle number O(10^5), comparable to that observed in recent experiments. The resulting density profile on a resonance yields the PS, which is in good agreement with the recent experiments, while the FFLO modulation exists in the pairing field. It is also proposed that the most favorable location for the detection of the FFLO oscillation is in the vicinity of the critical population imbalance in the weak coupling BCS regime, where the oscillation periodicity becomes much larger than the interparticle spacing. Finally, we analyze the radio-frequency (RF) spectroscopy in the imbalanced system. The clear difference in the RF spectroscopy between BCS and BEC sides reveals the structure of the pairing field and local ``magnetization''.Comment: 16 pages, 13 figures, replaced by the version to appear in J. Phys. Soc. Jp

    The role of social networks in students’ learning experiences

    No full text
    The aim of this research is to investigate the role of social networks in computer science education. The Internet shows great potential for enhancing collaboration between people and the role of social software has become increasingly relevant in recent years. This research focuses on analyzing the role that social networks play in students’ learning experiences. The construction of students’ social networks, the evolution of these networks, and their effects on the students’ learning experience in a university environment are examined

    Flow and critical velocity of an imbalanced Fermi gas through an optical potential

    Full text link
    Optical lattices offer the possibility to investigate the superfluid properties of both Bose condensates and Fermionic superfluid gases. When a population imbalance is present in a Fermi mixture, this leads to frustration of the pairing, and the superfluid properties will be affected. In this contribution, the influence of imbalance on the flow of a Fermi superfluid through an optical lattice is investigated. The flow through the lattice is analysed by taking into account coupling between neighbouring layers of the optical lattice up to second order in the interlayer tunneling amplitude for single atoms. The critical velocity of flow through the lattice is shown to decrease monotonically to zero as the imbalance is increased to 100%. Closed-form analytical expressions are given for the tunneling contribution to the action and for the critical velocity as a function of the binding energy of pairs in the (quasi) two-dimensional Fermi superfluid and as a function of the imbalance.Comment: 8 pages, 1 figure, contribution for the QFS 2007 conferenc

    Fractional differentiability for solutions of nonlinear elliptic equations

    Full text link
    We study nonlinear elliptic equations in divergence form div⁥A(x,Du)=div⁥G.{\operatorname{div}}{\mathcal A}(x,Du)={\operatorname{div}}G. When A{\mathcal A} has linear growth in DuDu, and assuming that x↩A(x,Ο)x\mapsto{\mathcal A}(x,\xi) enjoys Bnα,qαB^\alpha_{\frac{n}\alpha, q} smoothness, local well-posedness is found in Bp,qαB^\alpha_{p,q} for certain values of p∈[2,nα)p\in[2,\frac{n}{\alpha}) and q∈[1,∞]q\in[1,\infty]. In the particular case A(x,Ο)=A(x)Ο{\mathcal A}(x,\xi)=A(x)\xi, G=0G=0 and A∈Bnα,qαA\in B^\alpha_{\frac{n}\alpha,q}, 1≀q≀∞1\leq q\leq\infty, we obtain Du∈Bp,qαDu\in B^\alpha_{p,q} for each p<nαp<\frac{n}\alpha. Our main tool in the proof is a more general result, that holds also if A{\mathcal A} has growth s−1s-1 in DuDu, 2≀s≀n2\leq s\leq n, and asserts local well-posedness in LqL^q for each q>sq>s, provided that x↩A(x,Ο)x\mapsto{\mathcal A}(x,\xi) satisfies a locally uniform VMOVMO condition
    • 

    corecore