114 research outputs found

    Timing of infection and prior immunization with respiratory syncytial virus (RSV) in RSV-enhanced allergic inflammation

    Get PDF
    Respiratory syncytial virus (RSV) infection has been shown to be a risk factor for the development of allergy in humans and mice. The allergy-enhancing properties of RSV may be dependent on atopic background and an individual's history of RSV infection. We examined the influence of the timing of infection and prior inoculation with RSV in a mouse model of allergic asthma. Mice were sensitized to and challenged with ovalbumin (OVA) and were inoculated with RSV either before or during the sensitization or challenge period. One group of mice was inoculated with RSV both before sensitization to OVA and during challenge with OVA. Increased pulmonary expression of interleukin (IL)-4, IL-5, and IL-13 mRNA and aggravated alveolitis and hypertrophy of mucus-producing cells were observed only when OVA-sensitized mice were inoculated with RSV shortly before or during challenge with OVA. Despite protection against viral replication, prior inoculation with RSV did not abrogate RSV-enhanced, OVA-induced expression of T helper 2 (Th2) cytokines in the lung. In conclusion, inoculation with RSV enhances allergic disease only when the immune system has already been Th2-primed by the allergen (i.e., OVA). This RSV-enhanced allergy is not completely abrogated by prior inoculation with RSV

    Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves

    Get PDF
    peer-reviewedBackground There is a need to improve vaccination against respiratory pathogens in calves by stimulation of local immunity at the site of pathogen entry at an early stage in life. Ideally such a vaccine preparation would not be inhibited by the maternally derived antibodies. Additionally, localized immune response at the site of infection is also crucial to control infection at the site of entry of virus. The present study investigated the response to an intranasal bovine parainfluenza 3 virus (BPI3V) antigen preparation encapsulated in PLGA (poly dl-lactic-co-glycolide) nanoparticles in the presence of pre-existing anti-BPI3V antibodies in young calves and comparing it to a commercially available BPI3V respiratory vaccine. Results There was a significant (P < 0.05) increase in BPI3V-specific IgA in the nasal mucus of the BPI3V nanoparticle vaccine group alone. Following administration of the nanoparticle vaccine an early immune response was induced that continued to grow until the end of study and was not observed in the other treatment groups. Virus specific serum IgG response to both the nanoparticle vaccine and commercial live attenuated vaccine showed a significant (P < 0.05) rise over the period of study. However, the cell mediated immune response observed didn’t show any significant rise in any of the treatment groups. Conclusion Calves administered the intranasal nanoparticle vaccine induced significantly greater mucosal IgA responses, compared to the other treatment groups. This suggests an enhanced, sustained mucosal-based immunological response to the BPI3V nanoparticle vaccine in the face of pre-existing antibodies to BPI3V, which are encouraging and potentially useful characteristics of a candidate vaccine. However, ability of nanoparticle vaccine in eliciting cell mediated immune response needs further investigation. More sustained local mucosal immunity induced by nanoparticle vaccine has obvious potential if it translates into enhanced protective immunity in the face of virus outbreak

    A preliminary study of genetic factors that influence susceptibility to bovine tuberculosis in the British cattle herd

    Get PDF
    Associations between specific host genes and susceptibility to Mycobacterial infections such as tuberculosis have been reported in several species. Bovine tuberculosis (bTB) impacts greatly the UK cattle industry, yet genetic predispositions have yet to be identified. We therefore used a candidate gene approach to study 384 cattle of which 160 had reacted positively to an antigenic skin test (‘reactors’). Our approach was unusual in that it used microsatellite markers, embraced high breed diversity and focused particularly on detecting genes showing heterozygote advantage, a mode of action often overlooked in SNP-based studies. A panel of neutral markers was used to control for population substructure and using a general linear model-based approach we were also able to control for age. We found that substructure was surprisingly weak and identified two genomic regions that were strongly associated with reactor status, identified by markers INRA111 and BMS2753. In general the strength of association detected tended to vary depending on whether age was included in the model. At INRA111 a single genotype appears strongly protective with an overall odds ratio of 2.2, the effect being consistent across nine diverse breeds. Our results suggest that breeding strategies could be devised that would appreciably increase genetic resistance of cattle to bTB (strictly, reduce the frequency of incidence of reactors) with implications for the current debate concerning badger-culling

    Het Rijksvaccinatieprogramma in Nederland. Ontwikkelingen in 2006

    Get PDF
    In 2006 several changes were made in the Dutch National Immunisation Programme (NIP): Hepatitis B vaccination at birth was added for children born to mothers positive for hepatitis B surface antigen; a new vaccine for diphtheria, tetanus, pertussis (a-cellular), poliomyelitis and Haemophilus influenzae (DTaP-IPV/Hib) was introduced; vaccination against pneumococcal disease was added at two, three, four and eleven months; risk groups for hepatitis B receive a combined vaccine for DTaP-IPV/Hib and HBV at the same ages; DT-IPV and aP at the age of four years were combined in one vaccine; and new MMR vaccines were introduced. As new information became available in 2006, the desirability to introduce vaccinations in the NIP for the following diseases could be (re)considered: hepatitis B (universal vaccination), rotavirus, varicella and human papillomavirus. For respiratory syncytial virus and meningococcal serogroup B disease no candidate vaccines are available yet. Extension of the programme with available vaccines for hepatitis A, influenza and tuberculosis is not (yet) recommended. The NIP in the Netherlands is effective and safe. However, continued monitoring of the effectiveness and safety of the NIP is important as changes are made regularly. Maintaining high vaccine uptake is vital to prevent (re)emergence of diseases. Furthermore, the programme should be regularly reviewed as new vaccines become available.In 2006 traden verschillende veranderingen op in het Rijksvaccinatieprogramma (RVP) in Nederland: kinderen die geboren worden uit moeders die chronisch geinfecteerd zijn met hepatitis B krijgen vlak na de geboorte een hepatitis B vaccinatie; er is een ander vaccin geintroduceerd voor difterie, kinkhoest (a-cellulair), tetanus, poliomyelitis en Haemophilus influenzae (DaKTP/Hib); vaccinatie tegen pneumokokken is toegevoegd op de leeftijd van 2, drie, vier en elf maanden; risicogroepen voor hepatitis B krijgen op diezelfde leeftijden een combinatievaccin voor DaKTP/Hib en hepatitis B; DTP en aK zijn gecombineerd in een vaccin op vierjarige leeftijd; en er zijn nieuwe BMR vaccins geintroduceerd. Op basis van informatie die in 2006 beschikbaar is gekomen wordt geadviseerd de introductie van vaccinaties voor de volgende ziekten te overwegen: hepatitis B (universele vaccinatie), rotavirus, waterpokken en humaan papillomavirus. Voor respiratoir syncytieel virus en meningokokken B zijn nog geen kandidaatvaccins beschikbaar en uitbreiding van het RVP met beschikbare vaccins voor hepatitis A, influenza en tuberculose wordt nog niet aanbevolen. Het RVP is effectief en veilig, maar voortdurende bewaking hiervan is groot belang, omdat er regelmatig veranderingen optreden. Handhaven van de hoge vaccinatiegraad is essentieel om terugkeer van ziekten te voorkomen. Verder moet regelmatig bekeken worden of het RVP aangepast moet worden aangezien er steeds nieuwe vaccins beschikbaar komen

    Extended LTA, TNF, LST1 and HLA Gene Haplotypes and Their Association with Rubella Vaccine-Induced Immunity

    Get PDF
    Recent studies have suggested the importance of HLA genes in determining immune responses following rubella vaccine. The telomeric class III region of the HLA complex harbors several genes, including lymphotoxin alpha (LTA), tumor necrosis factor (TNF) and leukocyte specific transcript -1 (LST1) genes, located between the class I B and class II DRB1 loci. Apart from HLA, little is known about the effect of this extended genetic region on HLA haplotypic backgrounds as applied to immune responses.We examined the association between immune responses and extended class I-class II-class III haplotypes among 714 healthy children after two doses of rubella vaccination. These extended haplotypes were then compared to the HLA-only haplotypes. The most significant association was observed between haplotypes extending across the HLA class I region, ten-SNP haplotypes, and the HLA class II region (i.e. A-C-B-LTA-TNF-LST1-DRB1-DQA1-DQB1-DPA1-DPB1) and rubella-specific antibodies (global p-value of 0.03). Associations were found between both extended A*02-C*03-B*15-AAAACGGGGC-DRB1*04-DQA1*03-DQB1*03-DPA1*01-DPB1*04 (p = 0.002) and HLA-only A*02-C*03-B*15-DRB1*04-DQA1*03-DQB1*03-DPA1*01-DPB1*04 haplotypes (p = 0.009) and higher levels of rubella antibodies. The class II HLA-only haplotype DRB1*13-DQA1*01-DQB1*06-DPA1*01-DPB1*04 (p = 0.04) lacking LTA-TNF-LST1 SNPs was associated with lower rubella antibody responses. Similarly, the class I-class II HLA-only A*01-C*07-B*08-DRB1*03-DQA1*05-DQB1*02-DPA1*01-DPB1*04 haplotype was associated with increased TNF-alpha secretion levels (p = 0.009). In contrast, the extended AAAACGGGGC-DRB1*01-DQA1*01-DQB1*05-DPA1*01-DPB1*04 (p = 0.01) haplotype was found to trend with decreased rubella-specific IL-6 secretion levels.These data suggest the importance of examining both HLA genes and genes in the class III region as part of the extended haplotypes useful in understanding genomic drivers regulating immune responses to rubella vaccine

    Host Genetic Factors and Vaccine-Induced Immunity to HBV Infection: Haplotype Analysis

    Get PDF
    Hepatitis B virus (HBV) infection remains a significant health burden world-wide, although vaccines help decrease this problem. We previously identified associations of single nucleotide polymorphisms in several candidate genes with vaccine-induced peak antibody level (anti-HBs), which is predictive of long-term vaccine efficacy and protection against infection and persistent carriage; here we report on a haplotype-based analysis. A total of 688 SNPs from 117 genes were examined for a two, three and four sliding window haplotype analysis in a Gambian cohort. Analysis was performed on 197 unrelated individuals, 454 individuals from 174 families, and the combined sample (N = 651). Global and individual haplotype association tests were carried out (adjusted for covariates), employing peak anti-HBs level as outcome. Five genes (CD44, CD58, CDC42, IL19 and IL1R1) had at least one significant haplotype in the unrelated or family analysis as well as the combined analysis. Previous single locus results were confirmed for CD44 (combined global p = 9.1×10−5 for rs353644-rs353630-rs7937602) and CD58 (combined global p = 0.008 for rs1414275-rs11588376-rs1016140). Haplotypes in CDC42, IL19 and IL1R1 also associated with peak anti-HBs level. We have identified strong haplotype effects on HBV vaccine-induced antibody level in five genes, three of which, CDC42, IL19 and IL1R1, did not show evidence of association in a single SNP analyses and corroborated the majority of these effects in two datasets. The haplotype analysis identified associations with HBV vaccine-induced immunity in several new genes

    Aberrant host immune response induced by highly virulent PRRSV identified by digital gene expression tag profiling

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There was a large scale outbreak of the highly pathogenic porcine reproductive and respiratory syndrome (PRRS) in China and Vietnam during 2006 and 2007 that resulted in unusually high morbidity and mortality among pigs of all ages. The mechanisms underlying the molecular pathogenesis of the highly virulent PRRS virus (H-PRRSV) remains unknown. Therefore, the relationship between pulmonary gene expression profiles after H-PRRSV infection and infection pathology were analyzed in this study using high-throughput deep sequencing and histopathology.</p> <p>Results</p> <p>H-PRRSV infection resulted in severe lung pathology. The results indicate that aberrant host innate immune responses to H-PRRSV and induction of an anti-apoptotic state could be responsible for the aggressive replication and dissemination of H-PRRSV. Prolific rapid replication of H-PRRSV could have triggered aberrant sustained expression of pro-inflammatory cytokines and chemokines leading to a markedly robust inflammatory response compounded by significant cell death and increased oxidative damage. The end result was severe tissue damage and high pathogenicity.</p> <p>Conclusions</p> <p>The systems analysis utilized in this study provides a comprehensive basis for better understanding the pathogenesis of H-PRRSV. Furthermore, it allows the genetic components involved in H-PRRSV resistance/susceptibility in swine populations to be identified.</p

    Evolutionary Determinants of Genetic Variation in Susceptibility to Infectious Diseases in Humans

    Get PDF
    Although genetic variation among humans in their susceptibility to infectious diseases has long been appreciated, little focus has been devoted to identifying patterns in levels of variation in susceptibility to different diseases. Levels of genetic variation in susceptibility associated with 40 human infectious diseases were assessed by a survey of studies on both pedigree-based quantitative variation, as well as studies on different classes of marker alleles. These estimates were correlated with pathogen traits, epidemiological characteristics, and effectiveness of the human immune response. The strongest predictors of levels of genetic variation in susceptibility were disease characteristics negatively associated with immune effectiveness. High levels of genetic variation were associated with diseases with long infectious periods and for which vaccine development attempts have been unsuccessful. These findings are consistent with predictions based on theoretical models incorporating fitness costs associated with the different types of resistance mechanisms. An appreciation of these observed patterns will be a valuable tool in directing future research given that genetic variation in disease susceptibility has large implications for vaccine development and epidemiology
    corecore