10,745 research outputs found
Recommended from our members
Macrophages in wound healing: activation and plasticity.
Macrophages are critically involved in wound healing, from dampening inflammation to clearing cell debris and coordinating tissue repair. Within the wound, the complexity of macrophage function is increasingly recognized, with adverse outcomes when macrophages are inappropriately activated, such as in fibrosis or chronic non-healing wounds. Recent advances in in vivo and translational wound models, macrophage-specific deletions and new technologies to distinguish macrophage subsets, have uncovered the vast spectrum of macrophage activation and effector functions. Here, we summarize the main players in wound-healing macrophage activation and function, including cytokines, apoptotic cells, nucleotides and mechanical stimuli. We highlight recent studies demonstrating cooperation between these factors for optimal wound healing. Next, we describe recent technologies such as cell tracking and single-cell RNA-seq, which have uncovered remarkable plasticity and heterogeneity in blood-derived or tissue-resident macrophages and discuss the implications for wound healing. Lastly, we evaluate macrophage dysfunction in aberrant wound healing that occurs in aging, diabetes and fibrosis. A better understanding of the longevity and plasticity of wound-healing macrophages, and identification of unique macrophage subsets or specific effector molecules in wound healing, would shed light on the therapeutic potential of manipulating macrophage function for optimal wound healing
Amendment works of the Korean civil code (Property Law)
"The Korean Civil Code is currently in the process of amendment. The government expects to
submit a proposal for amending the Civil Code to this year's regular session of the National
Assembly. However, considering the extent to which the works for amending the Civil Code
being in process by the Civil Code amendment committee have thus far advanced, submission
of the proposal for Civil Code amendment within this year’s regular session of the National
Assembly can be considered not an easy task. In this lecture it will be attempted to examine the details of the project for amending the Korean Civil Code and to present my personal interim evaluation of the amendment works. Especially this lecture will be limited to the discussion of the amendment of the property law under the Korean Civil Code. Therefore, the property law in this paper means the general part, law of real rights and law of obligations of the Korean Civil Code, which is consisted with 5 parts together with the family law and the law of inheritance." (excerpt
Nitrogen doping of carbon nanoelectrodes for enhanced control of DNA translocation dynamics
Controlling the dynamics of DNA translocation is a central issue in the
emerging nanopore-based DNA sequencing. To address the potential of heteroatom
doping of carbon nanostructures to achieve this goal, herein we carry out
atomistic molecular dynamics simulations for single-stranded DNAs translocating
between two pristine or doped carbon nanotube (CNT) electrodes. Specifically,
we consider the substitutional nitrogen doping of capped CNT (capCNT)
electrodes and perform two types of molecular dynamics simulations for the
entrapped and translocating single-stranded DNAs. We find that the
substitutional nitrogen doping of capCNTs stabilizes the edge-on nucleobase
configurations rather than the original face-on ones and slows down the DNA
translocation speed by establishing hydrogen bonds between the N dopant atoms
and nucleobases. Due to the enhanced interactions between DNAs and N-doped
capCNTs, the duration time of nucleobases within the nanogap was extended by up
to ~ 290 % and the fluctuation of the nucleobases was reduced by up to ~ 70 %.
Given the possibility to be combined with extrinsic light or gate voltage
modulation methods, the current work demonstrates that the substitutional
nitrogen doping is a promising direction for the control of DNA translocation
dynamics through a nanopore or nanogap based of carbon nanomaterials.Comment: 11 pages, 4 figure
Observation of vortex-antivortex pairing in decaying 2D turbulence of a superfluid gas
In a two-dimensional (2D) classical fluid, a large-scale flow structure
emerges out of turbulence, which is known as the inverse energy cascade where
energy flows from small to large length scales. An interesting question is
whether this phenomenon can occur in a superfluid, which is inviscid and
irrotational by nature. Atomic Bose-Einstein condensates (BECs) of highly
oblate geometry provide an experimental venue for studying 2D superfluid
turbulence, but their full investigation has been hindered due to a lack of the
circulation sign information of individual quantum vortices in a turbulent
sample. Here, we demonstrate a vortex sign detection method by using Bragg
scattering, and we investigate decaying turbulence in a highly oblate BEC at
low temperatures, with our lowest being , where is the
superfluid critical temperature. We observe that weak spatial pairing between
vortices and antivortices develops in the turbulent BEC, which corresponds to
the vortex-dipole gas regime predicted for high dissipation. Our results
provide a direct quantitative marker for the survey of various 2D turbulence
regimes in the BEC system.Comment: 8 pages, 8 figure
- …