96 research outputs found
Adaptive Disorder Control in Data Stream Processing
Out-of-order tuples in continuous data streams may cause inaccurate query results since conventional window operators generally discard those tuples. Existing approaches use a buffer to fix disorder in stream tuples and estimate its size based on the maximum network delay seen in the streams. However, they do not provide a method to control the amount of tuples that are not saved and discarded from the buffer, although users may want to keep it within a predefined error bound according to application requirements. In this paper, we propose a method to estimate the buffer size while keeping the percentage of tuple drops within a user-specified bound. The proposed method utilizes tuples' interarrival times and their network delays for estimation, whose parameters reflect real-time stream characteristics properly. Based on two parameters, our method controls the amount of tuple drops adaptively in accordance with fluctuated stream characteristics and keeps their percentage within a given bound, which we observed through our experiments
PALS/PRISM Software Design Description (SDD): Ver. 0.51
This Software Design Description (SDD) provides detailed information on the architecture and coding for the PRISM C++ library (version 0.51). The PRISM C++ library supports consistent information sharing and in- teractions between distributed components of networked embedded systems, e.g. avionics. It is designed to reduce the complexity of the networked sys- tem by employing synchronous semantics provided by the architectural pat- tern called a Physically-Asynchronous Logically-Synchronous (PALS) system.unpublishednot peer reviewe
Modeling of asymmetric giant magnetoimpedance in amorphous ribbons with a surface crystalline layer
A model describing the asymmetric giant magnetoimpedance (GMI) in
field-annealed amorphous ribbons is proposed. It is assumed that the ribbon
consists of an inner amorphous core and surface hard magnetic crystalline
layers. The model is based on a simultaneous solution of linearizied Maxwell
equations and Landau-Lifshitz equation. The coupling between the surface layers
and the amorphous core is described in terms of an effective bias field.
Analytical expressions for the frequency and field dependences of the ribbon
impedance are found. The calculated dependences are in a qualitative agreement
with results of experimental studies of the high-frequency asymmetric giant GMI
in field-annealed amorphous ribbons.Comment: 13 pages, 3 figure
Tailored Micromagnet Sorting Gate for Simultaneous Multiple Cell Screening in Portable Magnetophoretic Cell-On-Chip Platforms
Conventional magnetophoresis techniques for manipulating biocarriers and cells predominantly rely on large-scale electromagnetic systems, which is a major obstacle to the development of portable and miniaturized cell-on-chip platforms. Herein, a novel magnetic engineering approach by tailoring a nanoscale notch on a disk micromagnet using two-step optical and thermal lithography is developed. Versatile manipulations are demonstrated, such as separation and trapping, of carriers and cells by mediating changes in the magnetic domain structure and discontinuous movement of magnetic energy wells around the circumferential edge of the micromagnet caused by a locally fabricated nano-notch in a low magnetic field system. The motion of the magnetic energy well is regulated by the configuration of the nanoscale notch and the strength and frequency of the magnetic field, accompanying the jump motion of the carriers. The proposed concepts demonstrate that multiple carriers and cells can be manipulated and sorted using optimized nanoscale multi-notch gates for a portable magnetophoretic system. This highlights the potential for developing cost-effective point-of-care testing and lab-on-chip systems for various single-cell-level diagnoses and analyses
Magnetophoretic Decoupler for Disaggregation and Interparticle Distance Control
The manipulation of superparamagnetic beads has attracted various lab on a chip and magnetic tweezer platforms for separating, sorting, and labeling cells and bioentities, but the irreversible aggregation of beads owing to magnetic interactions has limited its actual functionality. Here, an efficient solution is developed for the disaggregation of magnetic beads and interparticle distance control with a magnetophoretic decoupler using an external rotating magnetic field. A unique magnetic potential energy distribution in the form of an asymmetric magnetic thin film around the gap is created and tuned in a controlled manner, regulated by the size ratio of the bead with a magnetic pattern. Hence, the aggregated beads are detached into single beads and transported in one direction in an array pattern. Furthermore, the simultaneous and accurate spacing control of multiple magnetic bead pairs is performed by adjusting the angle of the rotating magnetic field, which continuously changes the energy well associated with a specific shape of the magnetic patterns. This technique offers an advanced solution for the disaggregation and controlled manipulation of beads, can allow new possibilities for the enhanced functioning of lab on a chip and magnetic tweezers platforms for biological assays, intercellular interactions, and magnetic biochip systems. © 2021 The Authors. Advanced Science published by Wiley-VCH GmbH1
Performance Validation of a Planar Hall Resistance Biosensor through Beta-Amyloid Biomarker
Magnetic sensors have great potential for biomedical applications, particularly, detection of magnetically-labeled biomolecules and cells. On the basis of the advantage of the planar Hall effect sensor, which consists of improved thermal stability as compared with other magnetic sensors, we have designed a portable biosensor platform that can detect magnetic labels without applying any external magnetic field. The trilayer sensor, with a composition of Ta (5 nm)/NiFe (10 nm)/Cu (x = 0 nm~1.2 nm)/IrMn (10 nm)/Ta (5 nm), was deposited on a silicon wafer using photolithography and a sputtering system, where the optimized sensor sensitivity was 6 μV/(Oe∙mA). The detection of the magnetic label was done by comparing the signals obtained in first harmonic AC mode (1f mode) using an external magnetic field and in the second harmonic AC mode (2f mode) with a self-field generated by current passing through the sensor. In addition, a technique for the β-amyloid biomarker-based antibody-antigen sandwich model was demonstrated for the detection of a series of concentrations of magnetic labels using the self-field mode method, where the signal-to-noise ratio (SNR) was high. The generated self-field was enough to detect an immobilized magnetic tag without an additional external magnetic field. Hence, it could be possible to reduce the device size to use the point-of-care testing using a portable circuit system.1
- …