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A magneto-optical Kerr effect system with a spatial resolution of 2mm was used to measure the
local M-H loops for the free layer of a magnetic tunnel junction with a structure of
Ta/Cu/Ta/NiFe/Cu/Mn75Ir25/Co70Fe30/Al2O3/Co70Fe30/Ta to investigate the exchange bias field
HE and the coercivityHC for the free layer. TheHE andHC measured along the direction of the free
layer varied symmetrically with respect to the junction center. The measurements indicate that the
enhancedHC correlated with HE, and HE could be reasonably explained by using an
“orange-peel-type” coupling based on variations in the thickness of the pinned layer along the
direction of the free layer. The variation inHE along the pinned-layer’s direction could be ascribed
to that of the free-layer’s thickness, and the increase inHE at the junction edge along the pinned
layer was due to a decrease in the thickness of the free layer near the edge. However, the nearly
constantHC along the pinned layer indicates that the thickness of the free layer can be excluded
from the mechanism for enhancingHC, which is a unique difference in the parameters involved in
HE and HC, and in the mechanism for enhancingHC. © 2004 American Institute of Physics.
[DOI: 10.1063/1.1811776]

I. INTRODUCTION

Ever since the discovery of the spin-valve structure con-
sisting of a ferromagnetic(FM) free-FM/spacer metal or
insulator/ferromagnetic pinned-FM/antiferromagnetic(AF)
multilayer,1 there has been renewed interest in investigating
exchange coupling due to its role in the response of the mag-
netoresistance to an external field. Exchange coupling in-
duces both an exchange bias fieldHE, representing a shift of
the hysteresis loop, and an enhancement of the coercivity
HC, which was observed by Meiklejohn and Bean in the
granular Co/CoO system.2 In the spin-valve structure, an
interplay between two kinds of couplings, interfacial cou-
pling between the pinned-FM and pinned-AF layers and in-
terlayer coupling between the free FM and the pinned-FM
layers, is observed.3

The investigation of interlayer coupling between the
free- and the pinned-FM layers through a nonmagnetic
spacer has mostly focused on the exchange field rather than
on the enhanced coercive force of the free layer. In the lit-
erature, several mechanisms have been proposed for inter-
layer coupling: RKKY-like coupling through an indirect ex-
change mediated by itinerant electrons,4,5 Neel’s orange-peel
coupling which is due to the magnetic dipole interaction and
is related to interfacial morphological corrugations,6–8 the
dipole interaction through stray fields induced by domain
walls9,10 or ripple domains,11,12 and pinhole coupling.13

When an insulating layer prevents electron itinerancy as in a

magnetic tunnel junction, reducing the possibility of RKKY-
like coupling, orange-peel coupling may be responsible for
exchange coupling.14,15

Only recently have there been a few reports on the
mechanism of the enhanced coercivity originating from the
interlayer coupling between the free- and the pinned-FM
layers.7,11 An available model is based on the magnetostatic
interaction of stray fields. That is, the stray field induced by
domain walls7,11,16 or magnetization ripple12,17 in the
pinned-FM layer couples magnetostatically through the non-
magnetic spacer with the stray field of the free-FM layer to
enhance the coercivity.

In this work, we measured the local distributions ofHE

and HC on the free layer of a patterned junction prepared
using a dc sputtering deposition method. We also discuss the
mechanism of enhanced coercivity in terms of an orange-
peel-type exchange coupling.

II. EXPERIMENTAL DETAILS

Tunnel junctions with a Tas50 Åd /Cu s100 Åd /
Ta s50 Åd /Ni Fe s20 Åd /Cu s50 Åd /Mn75Ir25 s100 Åd /Co70

Fe30 s25 Åd /Al 2O3 s15 Åd /Co70Fe30 s25 Åd /Ta s50Åd st-
ructure were prepared on thermally oxidized Si wafers by
using dc magnetron sputtering, with ultraclean Ars9Nd as the
process gas, in a chamber with a base pressure of 3
310−9 Torr. For barrier formation, metallic Al with a thick-
ness of 15 Å was deposited and subsequently oxidized in an
oxidation chamber with a radial slot antenna for 2.45 GHz
microwaves.18 Kr was used as the inert gas and was mixeda)Electronic mail: cgkim@cnu.ac.kr
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with O2 molecular gas for plasma oxidation.In situ patterned
junctions were prepared using a 1003100 mm2 shadow
mask during deposition, but the junction size was measured
to be 1803180 mm2 due to the edge effect of the spatial
distribution of sputtered atoms.19

The junction samples were annealed at 200 °C for 1 h
under a magnetic field of 1 kOe, followed by field cooling.
The stacks of Ta/NiFe/Cu below Mn75Ir25 improved the
crystalline orientation of the fcc-(111) MnIr plane,20 causing
the exchange coupling to be enhanced.21 The magneto-
optical Kerr effect(MOKE) method was used to obtain the
local M-H loops under a 50 Hz driving magnetic field with a
100 Oe amplitude. The penetration depth of the He–Ne laser
light was about 20 nm, which was enough to affect the entire
thickness of the free layer. The laser beam size was about
2mm in diameter, which corresponds to the spatial resolution
of the micro-MOKE system. The light beam was moved
along the free layer(across the pinned layer) and the pinned-
layer directions, denoted by thex axis and they axis in Fig.
1, respectively, crossing the junction center. The origin was
regarded as being 50mm from the junction edge. The sur-
face roughness was determined by using atomic force mi-
croscopy(AFM) at different points across the junction.

III. RESULTS AND DISCUSSION

Figures 2(a) and 2(b) show the measuredM-H loops at
several positions along the free layer(x axis) and the pinned-
layer (y axis) directions, respectively, where theM-H loops
were measured under a cyclic field along the pinned-layer
direction, that is, the annealing field direction. Here, the zero
field of each loop is shifted by 50 Oe. The loop at the outside
edge of the junction,x=45 mm is not shifted, as shown in
Fig. 2(a). The shift representing the exchange coupling(bias)
field HE increases as the measurement point is moved toward
the junction centerx=60, 75, and 135mm but then decreases
as the point is moved away from the center. We can also see
a similar variation in the coercivityHC.

When the measurement point is at the outside edge of
the junction along the pinned layery=60 mm the loop is
negligible, as shown in Fig. 2(b). A large shift of the loop is
seen fory=75 mm, and the variation is not significant for
y=90 and 135mm. The magnetization, however, increases as
the measurement point is moved toward the junction center,
i.e., towardy=135mm. The exchange bias field and the co-
ercivity of the pinned layer are measured to be 1470 Oe and
810 Oe, respectively. As a result, the magnetization of the
pinned layer is not affected by magnetic fields of about
100 Oe.

The magnetization evaluated by using the MOKE signal
is reflected in the thickness of the free layer because the
optical parameters, the extinction ratio of the polarizer, the
optical reflectivity, and the analyzer angle are fixed during
the measurement. Thus, we know that a gradual variation in
the thickness exists from the edge along the pinned layer, but
the thickness variation along the free layer is relatively
small. In fact, the gradual variation near the junction edge is
the outside of the shadow mask and may arise from edge
effects during deposition using a mask.19 As the inset of Fig.
3 shows, the variation along they axis could be fitted with
the following quadratic equation:

− 33.7 + 1.08x − 1.073 10−2x2 + 4.703 10−5x3 − 7.79

3 10−8x4sx is distance in units ofmmd.

FIG. 1. Schematic view of the sample geometry.

FIG. 2. M-H loops for different measuring points along(a) thex axis and(b) they axis. Thex and they axes are the directions of the free layer and the pinned
layer, respectively.
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Figure 4 shows the change in the thickness profile of the
total stack along thex axis (crossing the pinned layer), as
measured by using ana-step thickness profilometer(TEN-
COR 500 model). The gradual variation of the profile near
the edge spans a distance of up to 100mm from the edge,
irrespective of the junction size.22,23 Even though the profile
is affected by the relative bluntness of the tip of the profilo-
meter, we can still determine the gradual variation of thick-
ness from edge, as schematically depicted in the inset of Fig.
4. This thickness variation could be fitted with the quadratic
equation

− 7.463 102 + 3.153 10x − 3.333 10−1x2 + 1.66

3 10−3x3 − 3.253 10−6x4sx is distance in units ofmmd.

The variations ofHC andHE along thex axis and they

axis are shown in Figs. 5(a) and 5(b), respectively. In Fig.
5(a), the zero value ofHE gradually increases to 25 Oe at the
junction center. The value ofHC outside the junction is
7.5 Oe, which corresponds to the intrinsic coercivity of
CoFe.HC along thex axis increases to 15 Oe at the junction
center, indicating an enhancement ofHC by 7.5 Oe. In Fig.
5(b), HE exhibits a ridge-type variation along they axis, but
HC is nearly constant.

The exchange coupling on the FM layer invokes inter-
layer coupling of an orange-peel type between the
pinned-FM and the free-FM layers, andHE can be repre-
sented as a function of the surface roughness and the film
thickness as follows:24

HE = Mpfsrdgsts,tPdhstFd,

fsrd =
p2r2

Î2l
,

gsts,tPd = exps− 2pÎ2ts/ldf1 − exps− 2pÎ2tP/ldg,

hstFd =
f1 − exps− 2pÎ2tF/ldg

tF
, s1d

where r and l are the height and the wavelength of the
sinusoidal roughness, respectively,tF, tP, andtS are the thick-
nesses of the free, the pinned, and the insulating layers, re-
spectively, andMp is the saturation magnetization of the
pinned layer. Here, the function is written as a multiple of
individual functionsfsrd, gstP,tSd, andhstFd, which depend
on the parametersr, tP, tS, andtF.

The roughness seems to have a symmetric variation in
range from 2.5 Å to 5.8Å with respect to the center of the
pinned layer’s axis.25,26 However, because of difficulty posi-
tioning the AFM tip accurately, expressing that variation in
terms of an appropriate equation was not attempted, so we
used a constant value of 5.6 Å for the surface roughness in
the calculation.

The insulating layer’s thicknesstS is assumed to be a
constant 15 Å because its area is much larger than the junc-
tion area, as shown in Fig. 1. IftP is varied according to the
quadratic function in Fig. 4, the values ofHE can be calcu-
lated along thex axis by usingfsr =5.6 Åd3gstP,tS=15 Åd
3hstF=25 Åd and are compared with the measured values in
Fig. 5(a). Here, the wavelength of the roughness profile cor-
responds to the grain size of polycrystalline IrMn3, whose
value has been measured to be 100 Å.27 The calculated value
at the center nearly equals the measuredHE if Mp is given
the nominal value of 1300 emu/cc for CoFe as the fitting
value. On the whole, the calculatedHE along thex axis gives
reasonable agreement with the measuredHE, but some de-
viation of the calculated values from the measured values is
observed near the edges and might be due to the surface
roughness having a smaller value near the edge than it does
at the center. The measuredHC variation is similar to the
measuredHE variation, indicating that theHC enhancement
mechanism has some commonality with that ofHE in the
dipole interaction of the “orange-peel” model.

FIG. 3. Variation of the magnetization along thex- and they-axis directions.
The thickness of the free layer, fitted by a quadratic equation, is given by
−3.37310+1.08x−1.07310−2x2+4.70310−5x3−7.79310−8x4 (x is dis-
tance in units ofmm).

FIG. 4. Variation of the total film thickness, as checked by using ana-step
profilometer, fitted to the following quadratic equation: −7.463102+3.15
310x−3.33310−1x2+1.66310−3x3−3.25310−6x4 (x is distance in units of
mm). The variation in the thickness of the pinned layer is evaluated by
normalizing the total thickness of the stack.

J. Appl. Phys., Vol. 96, No. 12, 15 December 2004 Kim et al. 7401

Downloaded 28 Oct 2008 to 130.34.135.83. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



The free layer’s thicknesstF influences the variation of
HE along they axis. WhentF is varied according to the
quadratic equation in Fig. 3, the calculation gives a ridge-
type curve with peaks at the junction edges, as shown in Fig.
5(b). However, if the thickness of the free layertF is assumed
to be constants25 Åd along they axis, the calculated value
of HE is constant. Thus,HC measured along they axis, which
reflects thetF dependence, is nearly constant, which indicates
that free layer’s thickness is not involved in the mechanism
for enhancingHC and that the enhancement mechanisms for
HC andHE are different.

IV. CONCLUSION

The local variations of the enhanced coercivityHC and
of HE along the direction of the free layer follow similar
trends, andHE can be reasonably described by using orange-
peel coupling with a gradual variation in the thickness of the
pinned layer. The increase inHE at the edge along the pinned
layer is due to a gradual decrease in the free layer’s thickness
near the edge. However, the nearly constant value ofHC

along the pinned layer indicates that the free layer’s thick-
ness is not involved in the mechanism for enhancingHC.
From these analyses,HC enhancement could be due to a
magnetostatic coupling of domain walls in the free layer with
stray fields from the pinned-FM layer; these fields may origi-
nate from the orange-peel dipole of domain walls in the
pinned-FM layer. However, a more elaboratate calculation is
required to fully understanding theHC enhancement mecha-
nism.
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