10 research outputs found
Recommended from our members
DNA Analysis Indicates That Asian Elephants Are Native to Borneo and Are Therefore a High Priority for Conservation
The origin of Borneo's elephants is controversial. Two competing hypotheses argue that they are either indigenous, tracing back to the Pleistocene, or were introduced, descending from elephants imported in the 16th–18th centuries. Taxonomically, they have either been classified as a unique subspecies or placed under the Indian or Sumatran subspecies. If shown to be a unique indigenous population, this would extend the natural species range of the Asian elephant by 1300 km, and therefore Borneo elephants would have much greater conservation importance than if they were a feral population. We compared DNA of Borneo elephants to that of elephants from across the range of the Asian elephant, using a fragment of mitochondrial DNA, including part of the hypervariable d-loop, and five autosomal microsatellite loci. We find that Borneo's elephants are genetically distinct, with molecular divergence indicative of a Pleistocene colonisation of Borneo and subsequent isolation. We reject the hypothesis that Borneo's elephants were introduced. The genetic divergence of Borneo elephants warrants their recognition as a separate evolutionary significant unit. Thus, interbreeding Borneo elephants with those from other populations would be contraindicated in ex situ conservation, and their genetic distinctiveness makes them one of the highest priority populations for Asian elephant conservation
Wild Animal Mortality Monitoring and Human Ebola Outbreaks, Gabon and Republic of Congo, 2001–2003
An animal mortality monitoring network in Gabon and the Republic of Congo has demonstrated potential to predict and possibly prevent human Ebola outbreaks
The impact of ecological conditions on the prevalence of malaria among orangutans.
Contemporary human land use patterns have led to changes in orangutan ecology, such as the loss of habitat. One management response to orangutan habitat loss is to relocate orangutans into regions of intact, protected habitat. Young orangutans are also kept as pets and have at times been a valuable commodity in the illegal pet trade. In response to this situation, government authorities have taken law enforcement action by removing these animals from private hands and attempted to rehabilitate and release these orangutans. In relocating free-ranging orangutans, the animals are typically held isolated or with family members for <48 h and released, but during the course of rehabilitation, orangutans often spend some time in captive and semicaptive group settings. Captive/semicaptive groups have a higher density of orangutans than wild populations, and differ in other ways that may influence susceptibility to infectious disease. In order to determine the impact of these ecological settings on malaria, the prevalence of malaria was compared between 31 captive and semicaptive orangutans in a rehabilitation program at the Sepilok Orangutan Rehabilitation Centre and 43 wild orangutans being moved in a translocation project. The prevalence of malaria parasites, as determined by blood smear and Plasmodium genus-specific nested-polymerase chain reaction, was greater in the captive/semicaptive population (29 of 31) than in the wild population (5 of 43) even when accounting for age bias. This discrepancy is discussed in the context of population changes associated with the management of orangutans in captive/semicaptive setting, in particular a 50-fold increase in orangutan population density. The results provide an example of how an ecological change can influence pathogen prevalence.</p
Network of Asian Elephant Haplotypes Based on Statistical Parsimony
<p>Grey circles with letters denote haplotypes unique to the Sunda region (BD: Borneo; BQ, BV: peninsular Malaysia; BR, BS, BT, BU: Sumatra). White circles with letters denote haplotypes found in mainland Asia (excluding peninsular Malaysia) and Sri Lanka. The small open circles denote hypothetical haplotypes. Haplotypes beginning with the letters A and B belong to the two clades α and β, respectively.</p
Catastrophic ape decline in western equatorial Africa
Additional co-authors: Yves Mihindou, Sosthène Ndong Obiang, Ernestine Ntsame Effa, Malcolm P. Starkey, Paul Telfer, Marc Thibault, Caroline E. G. Tutin, David S. Wilkie
Output Type: Lette
Asian Elephant Range and Sampling Locations
<p>Central sampling locations denote the countries sampled and represent a number of actual sampling locations within each country. 1. Sri Lanka, 2. India, 3. Bhutan, 4. Bangladesh, 5. Thailand, 6. Laos, 7. Vietnam, 8. Cambodia, 9. Peninsular Malaysia, 10. Sumatra (Indonesia) 11. Borneo (Sabah–Malaysia).</p
A Neighbour-Joining Phylogram of Asian Elephant Haplotypes Rooted with an African Elephant Out-Group
<p>Sunda Region haplotypes are in bold.</p
Asian Elephant Range and Sampling Locations in Borneo
<p>Solid lines demarcate country borders and the dotted line the boundary between the Malaysian states of Sabah and Sarawak. Black dots indicate areas of sample collection.</p