838 research outputs found
A study of RSI under combined stresses
The behavior of typical rigidized surface insulation material (RSI) under combined loading states was investigated. In particular, the thermal stress states induced during reentry of the space shuttle were of prime concern. A typical RSI tile was analyzed for reentry thermal stresses under computed thermal gradients for a model of the RSI material. The results of the thermal stress analyses were then used to aid in defining typical combined stress states for the failure analysis of RSI
Phase operators, phase states and vector phase states for SU(3) and SU(2,1)
This paper focuses on phase operators, phase states and vector phase states
for the sl(3) Lie algebra. We introduce a one-parameter generalized oscillator
algebra A(k,2) which provides a unified scheme for dealing with su(3) (for k <
0), su(2,1) (for k > 0) and h(4) x h(4) (for k = 0) symmetries. Finite- and
infinite-dimensional representations of A(k,2) are constructed for k < 0 and k
> 0 or = 0, respectively. Phase operators associated with A(k,2) are defined
and temporally stable phase states (as well as vector phase states) are
constructed as eigenstates of these operators. Finally, we discuss a relation
between quantized phase states and a quadratic discrete Fourier transform and
show how to use these states for constructing mutually unbiased bases
Nonconservative higher-order hydrodynamic modulation instability
The modulation instability (MI) is a universal mechanism that is responsible
for the disintegration of weakly nonlinear narrow-banded wave fields and the
emergence of localized extreme events in dispersive media. The instability
dynamics is naturally triggered, when unstable energy side-bands located around
the main energy peak are excited and then follow an exponential growth law. As
a consequence of four wave mixing effect, these primary side-bands generate an
infinite number of additional side-bands, forming a triangular side-band
cascade. After saturation, it is expected that the system experiences a return
to initial conditions followed by a spectral recurrence dynamics. Much complex
nonlinear wave field motion is expected, when the secondary or successive
side-band pair that are created are also located in the finite instability gain
range around the main carrier frequency peak. This latter process is referred
to as higher-order MI. We report a numerical and experimental study that
confirm observation of higher-order MI dynamics in water waves. Furthermore, we
show that the presence of weak dissipation may counter-intuitively enhance wave
focusing in the second recurrent cycle of wave amplification. The
interdisciplinary weakly nonlinear approach in addressing the evolution of
unstable nonlinear waves dynamics may find significant resonance in other
nonlinear dispersive media in physics, such as optics, solids, superfluids and
plasma
Bases for qudits from a nonstandard approach to SU(2)
Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for
quantum information and quantum computation are constructed from angular
momentum theory and su(2) Lie algebraic methods. We report on a formula for
deriving in one step the (1+p)p qupits (i.e., qudits with d = p a prime
integer) of a complete set of 1+p mutually unbiased bases in C^p. Repeated
application of the formula can be used for generating mutually unbiased bases
in C^d with d = p^e (e > or = 2) a power of a prime integer. A connection
between mutually unbiased bases and the unitary group SU(d) is briefly
discussed in the case d = p^e.Comment: From a talk presented at the 13th International Conference on
Symmetry Methods in Physics (Dubna, Russia, 6-9 July 2009) organized in
memory of Prof. Yurii Fedorovich Smirnov by the Bogoliubov Laboratory of
Theoretical Physics of the JINR and the ICAS at Yerevan State University
On the use of the group SO(4,2) in atomic and molecular physics
In this paper the dynamical noninvariance group SO(4,2) for a hydrogen-like
atom is derived through two different approaches. The first one is by an
established traditional ascent process starting from the symmetry group SO(3).
This approach is presented in a mathematically oriented original way with a
special emphasis on maximally superintegrable systems, N-dimensional extension
and little groups. The second approach is by a new symmetry descent process
starting from the noninvariance dynamical group Sp(8,R) for a four-dimensional
harmonic oscillator. It is based on the little known concept of a Lie algebra
under constraints and corresponds in some sense to a symmetry breaking
mechanism. This paper ends with a brief discussion of the interest of SO(4,2)
for a new group-theoretical approach to the periodic table of chemical
elements. In this connection, a general ongoing programme based on the use of a
complete set of commuting operators is briefly described. It is believed that
the present paper could be useful not only to the atomic and molecular
community but also to people working in theoretical and mathematical physics.Comment: 31 page
Sum Rules for Multi-Photon Spectroscopy of Ions in Finite Symmetry
Models describing one- and two-photon transitions for ions in crystalline
environments are unified and extended to the case of parity-allowed and parity-
forbidden p-photon transitions. The number of independent parameters for
characterizing the polarization dependence is shown to depend on an ensemble of
properties and rules which combine symmetry considerations and physical models.Comment: 16 pages, Tex fil
Test Excavations at 41BL1214, Bell County, Texas: State Highway 95 Bridge Replacement at the Little River
In February and March 2004, Prewitt and Associates, Inc. (PAI), performed archeological test excavations at site 41BL1214 to determine its eligibility for listing in the National Register of Historic Places. This investigation was conducted within the existing and proposed right of way of the State Highway 95 bridge project at the Little River in Bell County for the Texas Department of Transportation. The site is situated on a flood terrace on the south bank of the Little River. In all, 18 m3 were excavated during testing. Excavations yielded artifacts, features, and other cultural materials associated with Late Archaic and Late Prehistoric components. Although the site is stratified, there appears to be no ready way to isolate the Late Archaic and Late Prehistoric components from one another, and thus the site has a limited capacity to yield important information. Based on this, it is recommended that the portion of 41BL1214 within the confines of the project area be judged not eligible for listing in the National Register of Historic Places or designation as a State Archeological Landmark. All artifacts, cultural materials, and records collected and generated by this project are curated at the Texas Archeological Research Laboratory (TARL), The University of Texas at Austin. Because the collected artifacts are from private property, they are curated in a non-held-in-trust status at TARL
In memoriam two distinguished participants of the Bregenz Symmetries in Science Symposia: Marcos Moshinsky and Yurii Fedorovich Smirnov
Some particular facets of the numerous works by Marcos Moshinsky and Yurii
Fedorovich Smirnov are presented in these notes. The accent is put on some of
the common interests of Yurii and Marcos in physics, theoretical chemistry, and
mathematical physics. These notes also contain some more personal memories of
Yurii Smirnov.Comment: Submitted for publication in Journal of Physics: Conference Serie
Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber
Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber is experimentally and numerically investigated. Guiding light in such fiber occurs via two mechanisms: photonic bandgap in the central silica core or total internal reflection in the germanium doped inclusions. By properly combining spectral filtering, dispersion tailoring and pump coupling into the fiber modes, we experimentally demonstrate efficient supercontinuum generation with controllable spectral bandwidth
Polynomial Solution of Non-Central Potentials
We show that the exact energy eigenvalues and eigenfunctions of the
Schrodinger equation for charged particles moving in certain class of
non-central potentials can be easily calculated analytically in a simple and
elegant manner by using Nikiforov and Uvarov (NU) method. We discuss the
generalized Coulomb and harmonic oscillator systems. We study the Hartmann
Coulomb and the ring-shaped and compound Coulomb plus Aharanov-Bohm potentials
as special cases. The results are in exact agreement with other methods.Comment: 18 page
- …