7 research outputs found

    Pros and cons of HaloPlex enrichment in cancer predisposition genetic diagnosis

    No full text
    Panel sequencing is a practical option in genetic diagnosis. Enrichment and library preparation steps are critical in the diagnostic setting. In order to test the value of HaloPlex technology in diagnosis, we designed a custom oncogenetic panel including 62 genes. The procedure was tested on a training set of 71 controls and then blindly validated on 48 consecutive hereditary breast/ovarian cancer (HBOC) patients tested negative for BRCA1/2 mutation. Libraries were sequenced on HiSeq2500 and data were analysed with our academic bioinformatics pipeline. Point mutations were detected using Varscan2, median size indels were detected using Pindel and large genomic rearrangements (LGR) were detected by DESeq. Proper coverage was obtained. However, highly variable read depth was observed within genes. Excluding pseudogene analysis, all point mutations were detected on the training set. All indels were also detected using Pindel. On the other hand, DESeq allowed LGR detection but with poor specificity, preventing its use in diagnostics. Mutations were detected in 8% of BRCA1/2-negative HBOC cases. HaloPlex technology appears to be an efficient and promising solution for gene panel diagnostics. Data analysis remains a major challenge and geneticists should enhance their bioinformatics knowledge in order to ensure good quality diagnostic results

    Functional classification of ATM variants in ataxia-telangiectasia patients.

    No full text
    Ataxia-telangiectasia (A-T) is a recessive disorder caused by biallelic pathogenic variants of ataxia-telangiectasia mutated (ATM). This disease is characterized by progressive ataxia, telangiectasia, immune deficiency, predisposition to malignancies, and radiosensitivity. However, hypomorphic variants may be discovered associated with very atypical phenotypes, raising the importance of evaluating their pathogenic effects. In this study, multiple functional analyses were performed on lymphoblastoid cell lines from 36 patients, comprising 49 ATM variants, 24 being of uncertain significance. Thirteen patients with atypical phenotype and presumably hypomorphic variants were of particular interest to test strength of functional analyses and to highlight discrepancies with typical patients. Western-blot combined with transcript analyses allowed the identification of one missing variant, confirmed suspected splice defects and revealed unsuspected minor transcripts. Subcellular localization analyses confirmed the low level and abnormal cytoplasmic localization of ATM for most A-T cell lines. Interestingly, atypical patients had lower kinase defect and less altered cell-cycle distribution after genotoxic stress than typical patients. In conclusion, this study demonstrated the pathogenic effects of the 49 variants, highlighted the strength of KAP1 phosphorylation test for pathogenicity assessment and allowed the establishment of the Ataxia-TeLangiectasia Atypical Score to predict atypical phenotype. Altogether, we propose strategies for ATM variant detection and classification

    Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers

    No full text
    International audienceRAD51 paralogs (RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3) have recently been involved in breast and ovarian cancer predisposition: RAD51B, RAD51C, and RAD51D in ovarian cancer, RAD51B and XRCC2 in breast cancer. The aim of this study was to estimate the contribution of deleterious variants in the five RAD51 paralogs to breast and ovarian cancers. The five RAD51 paralog genes were analyzed by next-generation sequencing technologies in germline DNA from 2649 consecutive patients diagnosed with breast and/or ovarian cancer. Twenty-one different deleterious variants were identified in the RAD51 paralogs in 30 patients: RAD51B (n = 4), RAD51C (n = 12), RAD51D (n = 7), XRCC2 (n = 2), and XRCC3 (n = 5). The overall deleterious variant rate was 1.13% (95% confidence interval (CI): 0.72–1.55%) (30/2649), including 15 variants in breast cancer only cases (15/2063; 0.73% (95% CI: 0.34–1.11%)) and 15 variants in cases with at least one ovarian cancer (15/570; 2.63% (95% CI: 1.24–4.02%)). This study is the first evaluation of the five RAD51 paralogs in breast and ovarian cancer predisposition and it demonstrates that deleterious variants can be present in breast cancer only cases. Moreover, this is the first time that XRCC3 deleterious variants have been identified in breast and ovarian cancer cases

    Classification of 101 BRCA1 and BRCA2 variants of uncertain significance by cosegregation study: A powerful approach

    No full text
    International audienc

    Classification of 101 BRCA1 and BRCA2 variants of uncertain significance by cosegregation study: A powerful approach

    No full text
    International audienc
    corecore