9 research outputs found

    Short-Term Effects of Gaseous Pollutants and Particulate Matter on Daily Hospital Admissions for Cardio-Cerebrovascular Disease in Lanzhou: Evidence from a Heavily Polluted City in China

    Get PDF
    Panel studies show a consistent association between increase in the cardiovascular hospitalizations with air pollutants in economically developed regions, but little evidence in less developed inland areas. In this study, a time-series analysis was used to examine the specific effects of major air pollutants [particulate matter less than 10 microns in diameter (PM10), sulfur dioxide (SO2), and nitrogen dioxides (NO2)] on daily hospital admissions for cardio-cerebrovascular diseases in Lanzhou, a heavily polluted city in China. We examined the effects of air pollutants for stratified groups by age and gender, and conducted the modifying effect of seasons on air pollutants to test the possible interaction. The significant associations were found between PM10, SO2 and NO2 and cardiac disease admissions, SO2 and NO2 were found to be associated with the cerebrovascular disease admissions. The elderly was associated more strongly with gaseous pollutants than younger. The modifying effect of seasons on air pollutants also existed. The significant effect of gaseous pollutants (SO2 and NO2) was found on daily hospital admissions even after adjustment for other pollutants except for SO2 on cardiac diseases. In a word, this study provides the evidence for the detrimental short-term health effects of urban gaseous pollutants on cardio-cerebrovascular diseases in Lanzhou

    Gender, Age and Season as Modifiers of the Effects of Diurnal Temperature Range on Emergency Room Admissions for Cause-Specific Cardiovascular Disease among the Elderly in Beijing

    No full text
    Background: Diurnal temperature range (DTR) is an important index of climate change and variability. It is also a risk factor affecting human health. However, limited evidence is available to illustrate the effect of DTR modification on cause-specific cardiovascular disease among the elderly. Methods: A semi-parametric generalized additive model (GAM) was used to analyze the exposure-effect relationship between DTR and daily emergency room (ER) admissions for cause-specific cardiovascular diseases among the elderly from 2009 to 2011 in Beijing. We examined the effects of DTR for stratified groups by gender and age, and examined the effects of DTR in the warm season and cold season for cause-specific cardiovascular diseases. Results: Significant associations were found between DTR and ER admissions for all cardiovascular and cerebrovascular disease among elderly males, while DTR was significantly associated with ER admissions for all cardiovascular disease, ischemic heart disease and cerebrovascular disease among elderly females. People aged 75 years and older were more vulnerable to DTR. DTR caused greater adverse effects on both genders in the warm season, whereas the effect estimates on females were higher in cold season than in warm season. Conclusions: A short-term increase of DTR was significantly associated with ER admissions for cause-specific cardiovascular disease among the elderly in Beijing. Gender, age and season may modify the acute health effect of DTR. Some prevention programs that target the high risk subgroups in the elderly for impending large temperature changes may reduce the impact of DTR on people’s health

    Water-soluble PANI:PSS designed for spontaneous non-disruptive membrane penetration and direct intracellular photothermal damage on bacteria

    No full text
    The major challenge in the field of antibacterial agents is to overcome the low-permeability of bacteria cell membranes that protects the cells against diverse drugs. In this work, water-soluble polyaniline (PANI)-poly (p-styrenesulfonic acid) (PSS) (PANI:PSS) is found to spontaneously penetrate bacteria cellular membranes in a non-disruptive way, leaving no evidence of membrane poration/disturbance or cell death, thus avoiding side effects caused by cationic ammonia groups in traditional ammonia-containing antibacterial agents. For aqueous synthesis, which is important for biocompatibility, the polymer is synthesized via an enzyme-mimetic route relying on the catalysis of a nanozyme. Owing to its fluorescent properties, the localization of as-prepared PANI:PSS is determined by the confocal microscope, and the results confirm its rapid entry into bacteria. Under 808 nm near-infrared (NIR) irradiation, the internalized PANI:PSS generates local hyperthermia and destroys bacteria highly efficiently from inside the cells due to its excellent photothermal effects. Staphylococcus aureus (S. aureus), Methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) could be effectively eliminated as well as the corresponding bacterial biofilms. Results of in vivo antibacterial experiments demonstrate excellent antibacterial activities of the water-soluble PANI:PSS without side effects. Therefore, the prepared water-soluble polymer in this study has great potential in the treatment of various bacterial infections
    corecore