151 research outputs found
Bronchial Thermoplasty Induced Airway Smooth Muscle Reduction and Clinical Response in Severe Asthma:The TASMA Randomized Trial
RATIONALE: Bronchial Thermoplasty (BT) is a bronchoscopic treatment for severe asthma targeting airway smooth muscle (ASM). Observational studies have shown ASM mass reduction after BT but appropriate control groups are lacking. Furthermore, as treatment response is variable, identifying optimal candidates for BT treatment is important. AIMS: First, to assess the effect of BT on ASM mass and second, to identify patient characteristics that correlate with BT-response. METHODS: Severe asthma patients (n=40) were randomized to immediate (n=20) or delayed (n=20) BT-treatment. Prior to randomization, clinical, functional, blood and airway biopsy data were collected. In the delayed control group, re-assessment, including biopsies, was performed after 6 months of standard clinical care, followed by BT. In both groups, post-BT data including biopsies were obtained after 6 months. ASM mass (% positive desmin or α-smooth muscle actin area in the total biopsy) was calculated with automated digital analyses software. Associations between baseline characteristics and Asthma Control and Asthma Quality of Life Questionnaire (ACQ/AQLQ) improvement were explored. RESULTS: Median ASM mass decreased by >50% in the immediate BT group (n=17) versus no change in the delayed control group (n=19) (p=0.0004). In the immediate group ACQ scores improved with -0.79 (-1.61;0.02 IQR) compared to 0.09 (-0.25;1.17 IQR) in the delayed group (p=0.006). AQLQ scores improved with 0.83 (-0.15;1.69 IQR) versus -0.02 (-0.77;0.75 IQR) (p=0.04). Treatment response in the total group (n=35) was positively associated with serum IgE and eosinophils, but not with baseline ASM mass. CONCLUSION: ASM mass significantly decreases after BT when compared to a randomized non-BT treated control group. Treatment response was associated with serum IgE and eosinophil levels but not with ASM mass. Clinical trial registration available at www.clinicaltrials.gov, ID:NCT0222539
Regulation of pro-inflammatory and pro-fibrotic factors by CCN2/CTGF in H9c2 cardiomyocytes
Connective tissue growth factor (CTGF), also known as CCN2, is implicated in fibrosis through both extracellular matrix (ECM) induction and inhibition of ECM degradation. The role of CTGF in inflammation in cardiomyocytes is unknown. In some mesenchymal cell systems, CTGF mediates effects through TGF-β or tyrosine kinase cell surface receptor, TrkA, signalling. In this study, cellular mechanisms by which CTGF regulates pathways involved in fibrosis and inflammation were explored. Murine H9c2 cardiomyocytes were treated with recombinant human (rh)CTGF and ECM formation gene expression: fibronectin, collagen type -I and -III and ECM degradation genes: TIMP-1, TIMP-2 and PAI-1 were found to be induced. CTGF treatment also increased pro-inflammatory cytokines TNF-α, IL-6, MCP-1 and IL-8. CTGF upregulated TGF-β1 mRNA and rapidly induced phosphorylation of TrkA. The CTGF-induced pro-fibrotic and pro-inflammatory effects were blocked by anti-TGF-β neutralizing antibody and Alk 5 inhibitor (SB431542). A specific blocker of TrkA activation, k252a, also abrogated CTGF-induced effects on fibrosis and gene expresison of MCP-1 and IL-8, but not TNF-α or IL-6. Collectively, this data implicates CTGF in effects on pro-fibrotic genes and pro-inflammatory genes via TGF-β pathway signalling and partly through TrkA
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas
Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas
This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing
molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images
Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images
of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL
maps are derived through computational staining using a convolutional neural network trained to
classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and
correlation with overall survival. TIL map structural patterns were grouped using standard
histopathological parameters. These patterns are enriched in particular T cell subpopulations
derived from molecular measures. TIL densities and spatial structure were differentially enriched
among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial
infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic
patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for
the TCGA image archives with insights into the tumor-immune microenvironment
A Multicenter Randomized Controlled Trial of Zephyr Endobronchial Valve Treatment in Heterogeneous Emphysema (TRANSFORM)
Rationale: Single-center randomized controlled trials of the Zephyr endobronchial valve (EBV) treatment have demonstrated benefit in severe heterogeneous emphysema. This is the first multicenter study evaluating this treatment approach. Objectives: To evaluate the efficacy and safety of Zephyr EBVs in patients with heterogeneous emphysema and absence of collateral ventilation. Methods: This was a prospective, multicenter 2:1 randomized controlled trial of EBVs plus standard of care or standard of care alone (SoC). Primary outcome at 3 months post-procedure was the percentage of subjects with FEV1 improvement from baseline of 12% or greater. Changes in FEV1, residual volume, 6-minute-walk distance, St. George's Respiratory Questionnaire score, and modified Medical Research Council score were assessed at 3 and 6 months, and target lobe volume reduction on chest computed tomography at 3 months. Measurements and Main Results: Ninety seven subjects were randomized toEBV(n = 65) or SoC(n = 32). At 3 months, 55.4% of EBV and 6.5% of SoC subjects had an FEV1 improvement of 12% or more (P <0.001). Improvements were maintained at 6 months: EBV 56.3% versus SoC 3.2% (P <0.001), with a mean +/- SD change in FEV1 at 6 months of 20.7 +/- 29.6% and -8.6 +/- 13.0%, respectively. A total of 89.8% of EBV subjects had target lobe volume reduction greater than or equal to 350 ml, mean 1.09 +/- 0.62 L (P <0.001). Between-group differences for changes at 6 months were statistically and clinically significant: Delta EBV-SoC for residual volume, -700 ml; 6-minute-walk distance, +78.7 m; St. George's Respiratory Questionnaire score, -6.5 points; modified Medical Research Council dyspnea score, -0.6 points; and BODE(body mass index, airflow obstruction, dyspnea, and exercise capacity) index, 21.8 points (all P <0.05). Pneumothorax was the most common adverse event, occurring in 19 of 65 (29.2%) of EBV subjects. Conclusions: EBV treatment in hyperinflated patients with heterogeneous emphysema without collateral ventilation resulted in clinically meaningful benefits in lung function, dyspnea, exercise tolerance, and quality of life, with an acceptable safety profile
Increased peri-ductal collagen micro-organization may contribute to raised mammographic density
BACKGROUND: High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins. METHODS: Mammographic density was assessed in 22 post-menopausal women (aged 54–66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Masson’s trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry. RESULTS: Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80 μm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness. CONCLUSIONS: These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13058-015-0664-2) contains supplementary material, which is available to authorized users
Development of a Definition of Postacute Sequelae of SARS-CoV-2 Infection
IMPORTANCE: SARS-CoV-2 infection is associated with persistent, relapsing, or new symptoms or other health effects occurring after acute infection, termed postacute sequelae of SARS-CoV-2 infection (PASC), also known as long COVID. Characterizing PASC requires analysis of prospectively and uniformly collected data from diverse uninfected and infected individuals.
OBJECTIVE: To develop a definition of PASC using self-reported symptoms and describe PASC frequencies across cohorts, vaccination status, and number of infections.
DESIGN, SETTING, AND PARTICIPANTS: Prospective observational cohort study of adults with and without SARS-CoV-2 infection at 85 enrolling sites (hospitals, health centers, community organizations) located in 33 states plus Washington, DC, and Puerto Rico. Participants who were enrolled in the RECOVER adult cohort before April 10, 2023, completed a symptom survey 6 months or more after acute symptom onset or test date. Selection included population-based, volunteer, and convenience sampling.
EXPOSURE: SARS-CoV-2 infection.
MAIN OUTCOMES AND MEASURES: PASC and 44 participant-reported symptoms (with severity thresholds).
RESULTS: A total of 9764 participants (89% SARS-CoV-2 infected; 71% female; 16% Hispanic/Latino; 15% non-Hispanic Black; median age, 47 years [IQR, 35-60]) met selection criteria. Adjusted odds ratios were 1.5 or greater (infected vs uninfected participants) for 37 symptoms. Symptoms contributing to PASC score included postexertional malaise, fatigue, brain fog, dizziness, gastrointestinal symptoms, palpitations, changes in sexual desire or capacity, loss of or change in smell or taste, thirst, chronic cough, chest pain, and abnormal movements. Among 2231 participants first infected on or after December 1, 2021, and enrolled within 30 days of infection, 224 (10% [95% CI, 8.8%-11%]) were PASC positive at 6 months.
CONCLUSIONS AND RELEVANCE: A definition of PASC was developed based on symptoms in a prospective cohort study. As a first step to providing a framework for other investigations, iterative refinement that further incorporates other clinical features is needed to support actionable definitions of PASC
- …