153 research outputs found

    Fragmentation of spherical radioactive heavy nuclei as a novel probe of transient effects in fission

    Full text link
    Peripheral collisions with radioactive heavy-ion beams at relativistic energies are discussed as an innovative approach for probing the transient regime experienced by fissile systems evolving towards quasi-equilibrium. A dedicated experiment using the advanced technical installations of GSI, Darmstadt, permitted to realize ideal conditions for the investigation of relaxation effects in the meta-stable well. Combined with a highly sensitive experimental signature, it provides a measure of the transient effects with respect to the flux over the fission barrier. Within a two-step reaction process, 45 proton-rich unstable spherical isotopes produced by projectile-fragmentation of a stable 238U beam have been used as secondary projectiles. The fragmentation of the radioactive projectiles on lead results in nearly spherical compound nuclei which span a wide range in excitation energy and fissility. The decay of these excited systems by fission is studied with a dedicated set-up which permits the detection of both fission products in coincidence and the determination of their atomic numbers with high resolution. The width of the fission-fragment nuclear charge distribution is shown to be specifically sensitive to pre-saddle transient effects and is used to establish a clock for the passage of the saddle point. The comparison of the experimental results with model calculations points to a fission delay of (3.3+/-0.7).10-21s for initially spherical compound nuclei, independent of excitation energy and fissility. This value suggests a nuclear dissipation strength at small deformation of (4.5+/-0.5).1021s-1. The very specific combination of the physics and technical equipment exploited in this work sheds light on previous controversial conclusions.Comment: 38 pages, 15 figure

    Dispersion of longitudinal momentum distributions induced in fragmentation reactions

    Full text link
    On the basis of systematic measurements of fragmentation reactions, which provide a detailed overview on the velocity distributions of residual nuclei, an improved description of the kinematical properties of the fragmentation residues is established. This work is dedicated to the fluctuations of their momentum distributions. In contrast to previous investigations, limited to close-to-projectile fragments, we extended our study to the entire production range, down to the lightest observed fragments. In this context, beside the contribution of abrasion and evaporation processes, we considered the effect of the thermal break-up on the width of the momentum distributions. Using approximated theoretical descriptions of the different reaction stages, a new analytical formula for the variance of the momentum distribution is derived, which is well adapted to technical applications.Comment: 14 pages, 3 figures, background info. at http://www-wnt.gsi.de/charms

    Origin of the even-odd effect in the yields from high-energy reactions

    Get PDF
    The analysis of experimental production cross-sections of the light products of several nuclear reactions at high energy, measured at the FRS, GSI Darmstadt, revealed a very strong and complex even-odd staggering. The origin of this effect is related to the condensation process of heated nuclear matter while cooling down in the last evaporation step. The characteristics of the staggering correlate strongly with the lowest particle separation energy of the final experimentally observed nuclei. The study confirms the important role of the deexcitation process in fragmentation reactions, and indicates that sequential decay strongly influences the yields of light fragments, which are often used to extract information on the nature of nuclear reactions at high energies

    R-process nucleosynthesis calculations with complete nuclear physics input

    Full text link
    The r-process constitutes one of the major challenges in nuclear astrophysics. Its astrophysical site has not yet been identified but there is observational evidence suggesting that at least two possible sites should contribute to the solar system abundance of r-process elements and that the r-process responsible for the production of elements heavier than Z=56 operates quite robustly producing always the same relative abundances. From the nuclear-physics point of view the r-process requires the knowledge of a large number of reaction rates involving exotic nuclei. These include neutron capture rates, beta-decays and fission rates, the latter for the heavier nuclei produced in the r-process. We have developed for the first time a complete database of reaction rates that in addition to neutron-capture rates and beta-decay half-lives includes all possible reactions that can induce fission (neutron-capture, beta-decay and spontaneous fission) and the corresponding fission yields. In addition, we have implemented these reaction rates in a fully implicit reaction network. We have performed r-process calculations for the neutrino-driven wind scenario to explore whether or not fission can contribute to provide a robust r-process pattern

    Experimental study of fragmentation products in the reactions 112Sn + 112Sn and 124Sn + 124Sn at 1 AGeV

    Full text link
    Production cross-sections and longitudinal velocity distributions of the projectile-like residues produced in the reactions 112Sn + 112Sn and 124Sn + 124Sn both at an incident beam energy of 1 AGeV were measured with the high-resolution magnetic spectrometer, the Fragment Separator (FRS) of GSI. For both reactions the characteristics of the velocity distributions and nuclide production cross sections were determined for residues with atomic number Z \geq 10. A comparison of the results of the two reactions is presented.Comment: 14 pages, 12 figure

    Production of neutron-rich nuclei in fragmentation reactions of 132Sn projectiles at relativistic energies

    Full text link
    The fragmentation of neutron-rich 132Sn nuclei produced in the fission of 238U projectiles at 950 MeV/u has been investigated at the FRagment Separator (FRS) at GSI. This work represents the first investigation of fragmentation of medium-mass radioactive projectiles with a large neutron excess. The measured production cross sections of the residual nuclei are relevant for the possible use of a two-stage reaction scheme (fission+fragmentation) for the production of extremely neutron-rich medium-mass nuclei in future rare-ion-beam facilities. Moreover, the new data will provide a better understanding of the "memory" effect in fragmentation reactions.Comment: 5 pages, 3 figure

    Constraint of the Nuclear Dissipation Coefficient in Fission of Hypernuclei

    Full text link
    Experimental studies of nuclear fission induced by fusion, transfer, spallation, fragmentation, and electromagnetic reactions in combination with state-of-the-art calculations are successful to investigate the nuclear dissipation mechanism in normal nuclear matter, containing only nucleons. The dissipation mechanism has been widely studied by the use of many different fission observables and nowadays the dissipation coefficients involved in transport theories are well constrained. However, the existence of hypernuclei and the possible presence of hyperons in neutron stars make it necessary to extend the investigation of the nuclear dissipation coefficient to the strangeness sector. In this Letter, we use fission reactions of hypernuclei to constrain for the first time the dissipation coefficient in hypernuclear matter, observing that this coefficient increases a factor of 6 in presence of a single Λ\Lambda-hyperon with respect to normal nuclear matter.Comment: 6 pages, 2 figure

    Experimental Indications for the Response of the Spectators to the Participant Blast

    Full text link
    Precise momentum distributions of identified projectile fragments, formed in the reactions 238U + Pb and 238U + Ti at 1 A GeV, are measured with a high-resolution magnetic spectrometer. With increasing mass loss, the velocities first decrease as expected from previously established systematics, then level off, and finally increase again. Light fragments are on the average even faster than the projectiles. This finding is interpreted as the response of the spectators to the participant blast. The re-acceleration of projectile spectators is sensitive to the nuclear mean field and provides a new tool for investigating the equation of state of nuclear matter.Comment: 7 pages, 3 figures, background information on http://www-wnt.gsi.de/kschmidt
    corecore