6,082 research outputs found

    On the appearance of hyperons in neutron stars

    Full text link
    By employing a recently constructed hyperon-nucleon potential the equation of state of \beta-equilibrated and charge neutral nucleonic matter is calculated. The hyperon-nucleon potential is a low-momentum potential which is obtained within a renormalization group framework. Based on the Hartree-Fock approximation at zero temperature the densities at which hyperons appear in neutron stars are estimated. For several different bare hyperon-nucleon potentials and a wide range of nuclear matter parameters it is found that hyperons in neutron stars are always present. These findings have profound consequences for the mass and radius of neutron stars.Comment: 12 pages, 12 figures, RevTeX4; summary and conclusions are strengthened, to appear in PR

    Two-dimensional solitons at interfaces between binary superlattices and homogeneous lattices

    Full text link
    We report on the experimental observation of two-dimensional surface solitons residing at the interface between a homogeneous square lattice and a superlattice that consists of alternating "deep" and "shallow" waveguides. By exciting single waveguides in the first row of the superlattice, we show that solitons centered on deep sites require much lower powers than their respective counterparts centered on shallow sites. Despite the fact that the average refractive index of the superlattice waveguides is equal to the refractive index of the homogeneous lattice, the interface results in clearly asymmetric output patterns.Comment: 16 pages, 5 figures, to appear in Physical Review

    Apollo 15 rake sample microbreccias and non-mare rocks: Bulk rock, mineral and glass electron microprobe analyses

    Get PDF
    Quantitative electron microprobe data of Apollo 15 nonmare rake samples are presented. Bulk analyses of lithic fragments in the nomare rocks (expressed in oxide weight-percent) and the corresponding CIPW molecular norms are given. The mineralogy of the rocks and lithic fragments are also given; structural formulae for complete analyses and molecular end-members for all mineral analyses are included. The mineral analyses include pyroxene, olivine, plagioclase, barian K-feldspar, spinel and ilmenite, cobaltian metallic nickel-iron as well as SiO2-K2O-rich residual glass. Electron micropobe analyses (oxide weight percent) of glasses in loose fines and microbreccia samples and their CIPW molecular norms are presented along with electron microprobe data on bulk, mineral, and matrix glass from chondrules

    Evolution of Proto-Neutron stars with kaon condensates

    Full text link
    We present simulations of the evolution of a proto-neutron star in which kaon-condensed matter might exist, including the effects of finite temperature and trapped neutrinos. The phase transition from pure nucleonic matter to the kaon condensate phase is described using Gibbs' rules for phase equilibrium, which permit the existence of a mixed phase. A general property of neutron stars containing kaon condensates, as well as other forms of strangeness, is that the maximum mass for cold, neutrino-free matter can be less than the maximum mass for matter containing trapped neutrinos or which has a finite entropy. A proto-neutron star formed with a baryon mass exceeding that of the maximum mass of cold, neutrino-free matter is therefore metastable, that is, it will collapse to a black hole at some time during the Kelvin-Helmholtz cooling stage. The effects of kaon condensation on metastable stars are dramatic. In these cases, the neutrino signal from a hypothetical galactic supernova (distance ∌8.5\sim8.5 kpc) will stop suddenly, generally at a level above the background in the SuperK and SNO detectors, which have low energy thresholds and backgrounds. This is in contrast to the case of a stable star, for which the signal exponentially decays, eventually disappearing into the background. We find the lifetimes of kaon-condensed metastable stars to be restricted to the range 40--70 s and weakly dependent on the proto-neutron star mass, in sharp contrast to the significantly larger mass dependence and range (1--100 s) of hyperon-rich metastable stars.Comment: 25 pages, 14 figures. Submitted to Astrophysical Journa

    Hemodynamic and ADH responses to central blood volume shifts in cardiac-denervated humans

    Get PDF
    Hemodynamic responses and antidiuretic hormone (ADH) were measured during body position changes designed to induce blood volume shifts in ten cardiac transplant recipients to assess the contribution of cardiac and vascular volume receptors in the control of ADH secretion. Each subject underwent 15 min of a control period in the seated posture, then assumed a lying posture for 30 min at 6 deg head down tilt (HDT) followed by 20 min of seated recovery. Venous blood samples and cardiac dimensions (echocardiography) were taken at 0 and 15 min before HDT, 5, 15, and 30 min of HDT, and 5, 15, and 30 min of seated recovery. Blood samples were analyzed for hematocrit, plasma osmolality, plasma renin activity (PRA), and ADH. Resting plasma volume (PV) was measured by Evans blue dye and percent changes in PV during posture changes were calculated from changes in hematocrit. Heart rate (HR) and blood pressure (BP) were recorded every 2 min. Results indicate that cardiac volume receptors are not the only mechanism for the control of ADH release during acute blood volume shifts in man

    Imaging cortical activity following affective stimulation with a high temporal and spatial resolution

    Get PDF
    Keil J, Adenauer H, Catani C, Neuner F. Imaging cortical activity following affective stimulation with a high temporal and spatial resolution. BMC Neuroscience. 2009;10(1):83.Background:The affective and motivational relevance of a stimulus has a distinct impact on cortical processing, particularly in sensory areas. However, the spatial and temporal dynamics of this affective modulation of brain activities remains unclear. The purpose of the present study was the development of a paradigm to investigate the affective modulation of cortical networks with a high temporal and spatial resolution. We assessed cortical activity with MEG using a visual steady-state paradigm with affective pictures. A combination of a complex demodulation procedure with a minimum norm estimation was applied to assess the temporal variation of the topography of cortical activity. Results: Statistical permutation analyses of the results of the complex demodulation procedure revealed increased steady-state visual evoked field amplitudes over occipital areas following presentation of affective pictures compared to neutral pictures. This differentiation shifted in the time course from occipital regions to parietal and temporal regions. Conclusion: It can be shown that stimulation with affective pictures leads to an enhanced activity in occipital region as compared to neutral pictures. However, the focus of differentiation is not stable over time but shifts into temporal and parietal regions within four seconds of stimulation. Thus, it can be crucial to carefully choose regions of interests and time intervals when analyzing the affective modulation of cortical activity

    Trapping cold atoms using surface-grown carbon nanotubes

    Get PDF
    We present a feasibility study for loading cold atomic clouds into magnetic traps created by single-wall carbon nanotubes grown directly onto dielectric surfaces. We show that atoms may be captured for experimentally sustainable nanotube currents, generating trapped clouds whose densities and lifetimes are sufficient to enable detection by simple imaging methods. This opens the way for a novel type of conductor to be used in atomchips, enabling atom trapping at sub-micron distances, with implications for both fundamental studies and for technological applications

    Lower bounds on the dilation of plane spanners

    Full text link
    (I) We exhibit a set of 23 points in the plane that has dilation at least 1.43081.4308, improving the previously best lower bound of 1.41611.4161 for the worst-case dilation of plane spanners. (II) For every integer n≄13n\geq13, there exists an nn-element point set SS such that the degree 3 dilation of SS denoted by ÎŽ0(S,3) equals 1+3=2.7321
\delta_0(S,3) \text{ equals } 1+\sqrt{3}=2.7321\ldots in the domain of plane geometric spanners. In the same domain, we show that for every integer n≄6n\geq6, there exists a an nn-element point set SS such that the degree 4 dilation of SS denoted by ÎŽ0(S,4) equals 1+(5−5)/2=2.1755
\delta_0(S,4) \text{ equals } 1 + \sqrt{(5-\sqrt{5})/2}=2.1755\ldots The previous best lower bound of 1.41611.4161 holds for any degree. (III) For every integer n≄6n\geq6 , there exists an nn-element point set SS such that the stretch factor of the greedy triangulation of SS is at least 2.02682.0268.Comment: Revised definitions in the introduction; 23 pages, 15 figures; 2 table

    Nucleon Spin Fluctuations and the Supernova Emission of Neutrinos and Axions

    Full text link
    In the hot and dense medium of a supernova (SN) core, the nucleon spins fluctuate so fast that the axial-vector neutrino opacity and the axion emissivity are expected to be significantly modified. Axions with m_a\alt10^{-2}\,{\rm eV} are not excluded by SN~1987A. A substantial transfer of energy in neutrino-nucleon (ÎœN\nu N) collisions is enabled which may alter the spectra of SN neutrinos relative to calculations where energy-conserving ÎœN\nu N collisions had been assumed near the neutrinosphere.Comment: 8 pages. REVTeX. 2 postscript figures, can be included with epsf. Small modifications of the text, a new "Note Added", and three new references. To be published in Phys. Rev. Let

    Detecting the Neutrino Mass Hierarchy with a Supernova at IceCube

    Full text link
    IceCube, a future km^3 antarctic ice Cherenkov neutrino telescope, is highly sensitive to a galactic supernova (SN) neutrino burst. The Cherenkov light corresponding to the total energy deposited by the SN neutrinos in the ice can be measured relative to background fluctuations with a statistical precision much better than 1%. If the SN is viewed through the Earth, the matter effect on neutrino oscillations can change the signal by more than 5%, depending on the flavor-dependent source spectra and the neutrino mixing parameters. Therefore, IceCube together with another high-statistics experiment like Hyper-Kamiokande can detect the Earth effect, an observation that would identify specific neutrino mixing scenarios that are difficult to pin down with long-baseline experiments. In particular, the normal mass hierarchy can be clearly detected if the third mixing angle is not too small, sin^2 theta_13 < 10^-3. The small flavor-dependent differences of the SN neutrino fluxes and spectra that are found in state-of-the-art simulations suffice for this purpose. Although the absolute calibration uncertainty at IceCube may exceed 5%, the Earth effect would typically vary by a large amount over the duration of the SN signal, obviating the need for a precise calibration. Therefore, IceCube with its unique geographic location and expected longevity can play a decisive role as a "co-detector" to measure SN neutrino oscillations. It is also a powerful stand-alone SN detector that can verify the delayed-explosion scenario.Comment: 19 pages, 6 Figs, final version accepted by JCAP, some references adde
    • 

    corecore